mihaimasala
commited on
Commit
•
c9baa9c
1
Parent(s):
9377eef
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,655 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-nc-4.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
language:
|
4 |
+
- ro
|
5 |
+
base_model:
|
6 |
+
- OpenLLM-Ro/RoGemma2-9b-Instruct-2024-10-09
|
7 |
+
datasets:
|
8 |
+
- OpenLLM-Ro/ro_dpo_helpsteer
|
9 |
+
model-index:
|
10 |
+
- name: OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2024-10-09
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
type: text-generation
|
14 |
+
dataset:
|
15 |
+
name: RoMT-Bench
|
16 |
+
type: RoMT-Bench
|
17 |
+
metrics:
|
18 |
+
- name: Score
|
19 |
+
type: Score
|
20 |
+
value: 6.77
|
21 |
+
- task:
|
22 |
+
type: text-generation
|
23 |
+
dataset:
|
24 |
+
name: RoCulturaBench
|
25 |
+
type: RoCulturaBench
|
26 |
+
metrics:
|
27 |
+
- name: Score
|
28 |
+
type: Score
|
29 |
+
value: 4.83
|
30 |
+
- task:
|
31 |
+
type: text-generation
|
32 |
+
dataset:
|
33 |
+
name: Romanian_Academic_Benchmarks
|
34 |
+
type: Romanian_Academic_Benchmarks
|
35 |
+
metrics:
|
36 |
+
- name: Average accuracy
|
37 |
+
type: accuracy
|
38 |
+
value: 59.08
|
39 |
+
- task:
|
40 |
+
type: text-generation
|
41 |
+
dataset:
|
42 |
+
name: OpenLLM-Ro/ro_arc_challenge
|
43 |
+
type: OpenLLM-Ro/ro_arc_challenge
|
44 |
+
metrics:
|
45 |
+
- name: Average accuracy
|
46 |
+
type: accuracy
|
47 |
+
value: 54.10
|
48 |
+
- task:
|
49 |
+
type: text-generation
|
50 |
+
dataset:
|
51 |
+
name: OpenLLM-Ro/ro_mmlu
|
52 |
+
type: OpenLLM-Ro/ro_mmlu
|
53 |
+
metrics:
|
54 |
+
- name: Average accuracy
|
55 |
+
type: accuracy
|
56 |
+
value: 63.41
|
57 |
+
- task:
|
58 |
+
type: text-generation
|
59 |
+
dataset:
|
60 |
+
name: OpenLLM-Ro/ro_winogrande
|
61 |
+
type: OpenLLM-Ro/ro_winogrande
|
62 |
+
metrics:
|
63 |
+
- name: Average accuracy
|
64 |
+
type: accuracy
|
65 |
+
value: 70.02
|
66 |
+
- task:
|
67 |
+
type: text-generation
|
68 |
+
dataset:
|
69 |
+
name: OpenLLM-Ro/ro_hellaswag
|
70 |
+
type: OpenLLM-Ro/ro_hellaswag
|
71 |
+
metrics:
|
72 |
+
- name: Average accuracy
|
73 |
+
type: accuracy
|
74 |
+
value: 59.35
|
75 |
+
- task:
|
76 |
+
type: text-generation
|
77 |
+
dataset:
|
78 |
+
name: OpenLLM-Ro/ro_gsm8k
|
79 |
+
type: OpenLLM-Ro/ro_gsm8k
|
80 |
+
metrics:
|
81 |
+
- name: Average accuracy
|
82 |
+
type: accuracy
|
83 |
+
value: 57.24
|
84 |
+
- task:
|
85 |
+
type: text-generation
|
86 |
+
dataset:
|
87 |
+
name: OpenLLM-Ro/ro_truthfulqa
|
88 |
+
type: OpenLLM-Ro/ro_truthfulqa
|
89 |
+
metrics:
|
90 |
+
- name: Average accuracy
|
91 |
+
type: accuracy
|
92 |
+
value: 50.39
|
93 |
+
- task:
|
94 |
+
type: text-generation
|
95 |
+
dataset:
|
96 |
+
name: LaRoSeDa_binary
|
97 |
+
type: LaRoSeDa_binary
|
98 |
+
metrics:
|
99 |
+
- name: Average macro-f1
|
100 |
+
type: macro-f1
|
101 |
+
value: 97.74
|
102 |
+
- task:
|
103 |
+
type: text-generation
|
104 |
+
dataset:
|
105 |
+
name: LaRoSeDa_multiclass
|
106 |
+
type: LaRoSeDa_multiclass
|
107 |
+
metrics:
|
108 |
+
- name: Average macro-f1
|
109 |
+
type: macro-f1
|
110 |
+
value: 67.40
|
111 |
+
- task:
|
112 |
+
type: text-generation
|
113 |
+
dataset:
|
114 |
+
name: WMT_EN-RO
|
115 |
+
type: WMT_EN-RO
|
116 |
+
metrics:
|
117 |
+
- name: Average bleu
|
118 |
+
type: bleu
|
119 |
+
value: 27.32
|
120 |
+
- task:
|
121 |
+
type: text-generation
|
122 |
+
dataset:
|
123 |
+
name: WMT_RO-EN
|
124 |
+
type: WMT_RO-EN
|
125 |
+
metrics:
|
126 |
+
- name: Average bleu
|
127 |
+
type: bleu
|
128 |
+
value: 15.96
|
129 |
+
- task:
|
130 |
+
type: text-generation
|
131 |
+
dataset:
|
132 |
+
name: XQuAD
|
133 |
+
type: XQuAD
|
134 |
+
metrics:
|
135 |
+
- name: Average exact_match
|
136 |
+
type: exact_match
|
137 |
+
value: 32.42
|
138 |
+
- task:
|
139 |
+
type: text-generation
|
140 |
+
dataset:
|
141 |
+
name: XQuAD
|
142 |
+
type: XQuAD
|
143 |
+
metrics:
|
144 |
+
- name: Average f1
|
145 |
+
type: f1
|
146 |
+
value: 58.68
|
147 |
+
- task:
|
148 |
+
type: text-generation
|
149 |
+
dataset:
|
150 |
+
name: STS
|
151 |
+
type: STS
|
152 |
+
metrics:
|
153 |
+
- name: Average spearman
|
154 |
+
type: spearman
|
155 |
+
value: 80.82
|
156 |
+
- task:
|
157 |
+
type: text-generation
|
158 |
+
dataset:
|
159 |
+
name: STS
|
160 |
+
type: STS
|
161 |
+
metrics:
|
162 |
+
- name: Average pearson
|
163 |
+
type: pearson
|
164 |
+
value: 81.50
|
165 |
+
- task:
|
166 |
+
type: text-generation
|
167 |
+
dataset:
|
168 |
+
name: RoMT-Bench
|
169 |
+
type: RoMT-Bench
|
170 |
+
metrics:
|
171 |
+
- name: First turn
|
172 |
+
type: Score
|
173 |
+
value: 7.24
|
174 |
+
- name: Second turn
|
175 |
+
type: Score
|
176 |
+
value: 6.30
|
177 |
+
- task:
|
178 |
+
type: text-generation
|
179 |
+
dataset:
|
180 |
+
name: OpenLLM-Ro/ro_arc_challenge
|
181 |
+
type: OpenLLM-Ro/ro_arc_challenge
|
182 |
+
metrics:
|
183 |
+
- name: 0-shot
|
184 |
+
type: accuracy
|
185 |
+
value: 51.59
|
186 |
+
- name: 1-shot
|
187 |
+
type: accuracy
|
188 |
+
value: 50.99
|
189 |
+
- name: 3-shot
|
190 |
+
type: accuracy
|
191 |
+
value: 53.47
|
192 |
+
- name: 5-shot
|
193 |
+
type: accuracy
|
194 |
+
value: 54.84
|
195 |
+
- name: 10-shot
|
196 |
+
type: accuracy
|
197 |
+
value: 58.10
|
198 |
+
- name: 25-shot
|
199 |
+
type: accuracy
|
200 |
+
value: 55.61
|
201 |
+
- task:
|
202 |
+
type: text-generation
|
203 |
+
dataset:
|
204 |
+
name: OpenLLM-Ro/ro_mmlu
|
205 |
+
type: OpenLLM-Ro/ro_mmlu
|
206 |
+
metrics:
|
207 |
+
- name: 0-shot
|
208 |
+
type: accuracy
|
209 |
+
value: 62.15
|
210 |
+
- name: 1-shot
|
211 |
+
type: accuracy
|
212 |
+
value: 62.78
|
213 |
+
- name: 3-shot
|
214 |
+
type: accuracy
|
215 |
+
value: 64.27
|
216 |
+
- name: 5-shot
|
217 |
+
type: accuracy
|
218 |
+
value: 64.43
|
219 |
+
- task:
|
220 |
+
type: text-generation
|
221 |
+
dataset:
|
222 |
+
name: OpenLLM-Ro/ro_winogrande
|
223 |
+
type: OpenLLM-Ro/ro_winogrande
|
224 |
+
metrics:
|
225 |
+
- name: 0-shot
|
226 |
+
type: accuracy
|
227 |
+
value: 66.69
|
228 |
+
- name: 1-shot
|
229 |
+
type: accuracy
|
230 |
+
value: 68.82
|
231 |
+
- name: 3-shot
|
232 |
+
type: accuracy
|
233 |
+
value: 71.82
|
234 |
+
- name: 5-shot
|
235 |
+
type: accuracy
|
236 |
+
value: 72.77
|
237 |
+
- task:
|
238 |
+
type: text-generation
|
239 |
+
dataset:
|
240 |
+
name: OpenLLM-Ro/ro_hellaswag
|
241 |
+
type: OpenLLM-Ro/ro_hellaswag
|
242 |
+
metrics:
|
243 |
+
- name: 0-shot
|
244 |
+
type: accuracy
|
245 |
+
value: 56.98
|
246 |
+
- name: 1-shot
|
247 |
+
type: accuracy
|
248 |
+
value: 57.73
|
249 |
+
- name: 3-shot
|
250 |
+
type: accuracy
|
251 |
+
value: 59.29
|
252 |
+
- name: 5-shot
|
253 |
+
type: accuracy
|
254 |
+
value: 60.70
|
255 |
+
- name: 10-shot
|
256 |
+
type: accuracy
|
257 |
+
value: 62.03
|
258 |
+
- task:
|
259 |
+
type: text-generation
|
260 |
+
dataset:
|
261 |
+
name: OpenLLM-Ro/ro_gsm8k
|
262 |
+
type: OpenLLM-Ro/ro_gsm8k
|
263 |
+
metrics:
|
264 |
+
- name: 1-shot
|
265 |
+
type: accuracy
|
266 |
+
value: 46.78
|
267 |
+
- name: 3-shot
|
268 |
+
type: accuracy
|
269 |
+
value: 59.97
|
270 |
+
- name: 5-shot
|
271 |
+
type: accuracy
|
272 |
+
value: 64.97
|
273 |
+
- task:
|
274 |
+
type: text-generation
|
275 |
+
dataset:
|
276 |
+
name: LaRoSeDa_binary
|
277 |
+
type: LaRoSeDa_binary
|
278 |
+
metrics:
|
279 |
+
- name: 0-shot
|
280 |
+
type: macro-f1
|
281 |
+
value: 97.30
|
282 |
+
- name: 1-shot
|
283 |
+
type: macro-f1
|
284 |
+
value: 97.50
|
285 |
+
- name: 3-shot
|
286 |
+
type: macro-f1
|
287 |
+
value: 97.83
|
288 |
+
- name: 5-shot
|
289 |
+
type: macro-f1
|
290 |
+
value: 98.33
|
291 |
+
- task:
|
292 |
+
type: text-generation
|
293 |
+
dataset:
|
294 |
+
name: LaRoSeDa_multiclass
|
295 |
+
type: LaRoSeDa_multiclass
|
296 |
+
metrics:
|
297 |
+
- name: 0-shot
|
298 |
+
type: macro-f1
|
299 |
+
value: 59.30
|
300 |
+
- name: 1-shot
|
301 |
+
type: macro-f1
|
302 |
+
value: 65.52
|
303 |
+
- name: 3-shot
|
304 |
+
type: macro-f1
|
305 |
+
value: 70.94
|
306 |
+
- name: 5-shot
|
307 |
+
type: macro-f1
|
308 |
+
value: 73.85
|
309 |
+
- task:
|
310 |
+
type: text-generation
|
311 |
+
dataset:
|
312 |
+
name: WMT_EN-RO
|
313 |
+
type: WMT_EN-RO
|
314 |
+
metrics:
|
315 |
+
- name: 0-shot
|
316 |
+
type: bleu
|
317 |
+
value: 17.49
|
318 |
+
- name: 1-shot
|
319 |
+
type: bleu
|
320 |
+
value: 30.33
|
321 |
+
- name: 3-shot
|
322 |
+
type: bleu
|
323 |
+
value: 30.58
|
324 |
+
- name: 5-shot
|
325 |
+
type: bleu
|
326 |
+
value: 30.88
|
327 |
+
- task:
|
328 |
+
type: text-generation
|
329 |
+
dataset:
|
330 |
+
name: WMT_RO-EN
|
331 |
+
type: WMT_RO-EN
|
332 |
+
metrics:
|
333 |
+
- name: 0-shot
|
334 |
+
type: bleu
|
335 |
+
value: 2.17
|
336 |
+
- name: 1-shot
|
337 |
+
type: bleu
|
338 |
+
value: 10.69
|
339 |
+
- name: 3-shot
|
340 |
+
type: bleu
|
341 |
+
value: 21.68
|
342 |
+
- name: 5-shot
|
343 |
+
type: bleu
|
344 |
+
value: 29.28
|
345 |
+
- task:
|
346 |
+
type: text-generation
|
347 |
+
dataset:
|
348 |
+
name: XQuAD_EM
|
349 |
+
type: XQuAD_EM
|
350 |
+
metrics:
|
351 |
+
- name: 0-shot
|
352 |
+
type: exact_match
|
353 |
+
value: 23.28
|
354 |
+
- name: 1-shot
|
355 |
+
type: exact_match
|
356 |
+
value: 33.45
|
357 |
+
- name: 3-shot
|
358 |
+
type: exact_match
|
359 |
+
value: 34.37
|
360 |
+
- name: 5-shot
|
361 |
+
type: exact_match
|
362 |
+
value: 38.57
|
363 |
+
- task:
|
364 |
+
type: text-generation
|
365 |
+
dataset:
|
366 |
+
name: XQuAD_F1
|
367 |
+
type: XQuAD_F1
|
368 |
+
metrics:
|
369 |
+
- name: 0-shot
|
370 |
+
type: f1
|
371 |
+
value: 47.16
|
372 |
+
- name: 1-shot
|
373 |
+
type: f1
|
374 |
+
value: 60.28
|
375 |
+
- name: 3-shot
|
376 |
+
type: f1
|
377 |
+
value: 62.09
|
378 |
+
- name: 5-shot
|
379 |
+
type: f1
|
380 |
+
value: 65.20
|
381 |
+
- task:
|
382 |
+
type: text-generation
|
383 |
+
dataset:
|
384 |
+
name: STS_Spearman
|
385 |
+
type: STS_Spearman
|
386 |
+
metrics:
|
387 |
+
- name: 1-shot
|
388 |
+
type: spearman
|
389 |
+
value: 75.34
|
390 |
+
- name: 3-shot
|
391 |
+
type: spearman
|
392 |
+
value: 82.71
|
393 |
+
- name: 5-shot
|
394 |
+
type: spearman
|
395 |
+
value: 84.41
|
396 |
+
- task:
|
397 |
+
type: text-generation
|
398 |
+
dataset:
|
399 |
+
name: STS_Pearson
|
400 |
+
type: STS_Pearson
|
401 |
+
metrics:
|
402 |
+
- name: 1-shot
|
403 |
+
type: pearson
|
404 |
+
value: 77.97
|
405 |
+
- name: 3-shot
|
406 |
+
type: pearson
|
407 |
+
value: 82.49
|
408 |
+
- name: 5-shot
|
409 |
+
type: pearson
|
410 |
+
value: 84.05
|
411 |
+
|
412 |
+
---
|
413 |
+
|
414 |
+
# Model Card for Model ID
|
415 |
+
|
416 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
417 |
+
|
418 |
+
This model points/is identical to [RoGemma2-9b-Instruct-DPO-2024-10-09](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2024-10-09).
|
419 |
+
|
420 |
+
|
421 |
+
RoGemma2 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **human aligned instruct 9B model**. Links to other models can be found at the bottom of this page.
|
422 |
+
|
423 |
+
## Model Details
|
424 |
+
|
425 |
+
### Model Description
|
426 |
+
|
427 |
+
<!-- Provide a longer summary of what this model is. -->
|
428 |
+
OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
|
429 |
+
|
430 |
+
|
431 |
+
- **Developed by:** OpenLLM-Ro
|
432 |
+
<!-- - **Funded by [optional]:** [More Information Needed] -->
|
433 |
+
<!-- - **Shared by [optional]:** [More Information Needed] -->
|
434 |
+
<!-- - **Model type:** [More Information Needed] -->
|
435 |
+
- **Language(s):** Romanian
|
436 |
+
- **License:** cc-by-nc-4.0
|
437 |
+
- **Finetuned from model:** [RoGemma2-9b-Instruct-2024-10-09](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-2024-10-09)
|
438 |
+
- **Trained using:** [RoHelpSteer](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer)
|
439 |
+
|
440 |
+
|
441 |
+
### Model Sources
|
442 |
+
|
443 |
+
<!-- Provide the basic links for the model. -->
|
444 |
+
|
445 |
+
- **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
|
446 |
+
- **Paper:** https://arxiv.org/abs/2406.18266
|
447 |
+
|
448 |
+
## Intended Use
|
449 |
+
|
450 |
+
### Intended Use Cases
|
451 |
+
|
452 |
+
RoGemma2 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
|
453 |
+
|
454 |
+
### Out-of-Scope Use
|
455 |
+
|
456 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
457 |
+
|
458 |
+
Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
|
459 |
+
|
460 |
+
|
461 |
+
|
462 |
+
## How to Get Started with the Model
|
463 |
+
|
464 |
+
Use the code below to get started with the model.
|
465 |
+
|
466 |
+
```python
|
467 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
468 |
+
|
469 |
+
tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoGemma2-9b-Instruct-DPO")
|
470 |
+
model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoGemma2-9b-Instruct-DPO")
|
471 |
+
|
472 |
+
instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
|
473 |
+
chat = [
|
474 |
+
{"role": "user", "content": instruction},
|
475 |
+
]
|
476 |
+
prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
|
477 |
+
|
478 |
+
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
|
479 |
+
outputs = model.generate(input_ids=inputs, max_new_tokens=128)
|
480 |
+
print(tokenizer.decode(outputs[0]))
|
481 |
+
```
|
482 |
+
|
483 |
+
## Academic Benchmarks
|
484 |
+
|
485 |
+
<table>
|
486 |
+
<tbody>
|
487 |
+
<tr>
|
488 |
+
<td><strong>Model</strong></td>
|
489 |
+
<td><strong><center>Average</center></strong></td>
|
490 |
+
<td><strong><center>ARC</center></strong></td>
|
491 |
+
<td><strong><center>MMLU</center></strong></td>
|
492 |
+
<td><strong><center>Winogrande</center></strong></td>
|
493 |
+
<td><strong><center>Hellaswag</center></strong></td>
|
494 |
+
<td><strong><center>GSM8k</center></strong></td>
|
495 |
+
<td><strong><center>TruthfulQA</center></strong></td>
|
496 |
+
</tr>
|
497 |
+
<tr>
|
498 |
+
<td>gemma-2-9b-it</td><td><center>56.22</center></td><td><center>50.33</center></td><td><center><strong>64.01</strong></center></td><td><center>64.88</center></td><td><center><strong>63.11</strong></center></td><td><center>41.95</center></td><td><center>53.03</center></td>
|
499 |
+
</tr>
|
500 |
+
<tr>
|
501 |
+
<td>RoGemma2-9b-Instruct-2024-10-09</td><td><center>57.06</center></td><td><center><strong>56.20</strong></center></td><td><center>62.98</center></td><td><center><strong>71.00</strong></center></td><td><center>60.52</center></td><td><center>37.86</center></td><td><center><strong>53.77</strong></center></td>
|
502 |
+
</tr>
|
503 |
+
<tr>
|
504 |
+
<td><em>RoGemma2-9b-Instruct-DPO-2024-10-09</em></td><td><center><em><strong>59.08</strong></em></center></td><td><center><em>54.10</em></center></td><td><center><em>63.41</em></center></td><td><center><em>70.02</em></center></td><td><center><em>59.35</em></center></td><td><center><em><strong>57.24</strong></em></center></td><td><center><em>50.39</em></center></td>
|
505 |
+
</tr>
|
506 |
+
</tbody>
|
507 |
+
</table>
|
508 |
+
|
509 |
+
|
510 |
+
## Downstream tasks
|
511 |
+
|
512 |
+
<table>
|
513 |
+
<tbody>
|
514 |
+
<tr>
|
515 |
+
<td></td>
|
516 |
+
<td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
|
517 |
+
<td colspan="4"><center><strong>WMT</strong></center></td>
|
518 |
+
</tr>
|
519 |
+
<tr>
|
520 |
+
<td></td>
|
521 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
522 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
523 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
524 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
525 |
+
</tr>
|
526 |
+
<tr>
|
527 |
+
<td><strong>Model</strong></td>
|
528 |
+
<td><center><strong>Binary<br>(Macro F1)</strong></center></td>
|
529 |
+
<td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
|
530 |
+
<td><center><strong>Binary<br>(Macro F1)</strong></center></td>
|
531 |
+
<td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
|
532 |
+
<td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
|
533 |
+
<td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
|
534 |
+
<td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
|
535 |
+
<td><center><strong>RO-EN<br>(Bleu)</strong></center>
|
536 |
+
</tr>
|
537 |
+
<tr>
|
538 |
+
<td>gemma-2-9b-it</td><td><center>90.82</center></td><td><center>52.51</center></td><td><center>-</center></td><td><center>-</center></td><td><center>19.97</center></td><td><center><strong>28.94</strong></center></td><td><center>-</center></td><td><center>-</center></td>
|
539 |
+
</tr>
|
540 |
+
<tr>
|
541 |
+
<td>RoGemma2-9b-Instruct-2024-10-09</td><td><center>96.19</center></td><td><center>62.49</center></td><td><center>-</center></td><td><center>-</center></td><td><center>25.74</center></td><td><center>23.16</center></td><td><center>-</center></td><td><center>-</center></td>
|
542 |
+
</tr>
|
543 |
+
<tr>
|
544 |
+
<td><em>RoGemma2-9b-Instruct-DPO-2024-10-09</em></td><td><center><em><strong>97.74</strong></em></center></td><td><center><em><strong>67.40</strong></em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em><strong>27.32</strong></em></center></td><td><center><em>15.96</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
|
545 |
+
</tr>
|
546 |
+
</tbody>
|
547 |
+
</table>
|
548 |
+
|
549 |
+
|
550 |
+
<table>
|
551 |
+
<tbody>
|
552 |
+
<tr>
|
553 |
+
<td></td>
|
554 |
+
<td colspan="4"><center><strong>XQuAD</strong></center></td>
|
555 |
+
<td colspan="4"><center><strong>STS</strong></center></td>
|
556 |
+
</tr>
|
557 |
+
<tr>
|
558 |
+
<td></td>
|
559 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
560 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
561 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
562 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
563 |
+
</tr>
|
564 |
+
<tr>
|
565 |
+
<td><strong>Model</strong></td>
|
566 |
+
<td><center><strong>(EM)</strong></center></td>
|
567 |
+
<td><center><strong>(F1)</strong></center></td>
|
568 |
+
<td><center><strong>(EM)</strong></center></td>
|
569 |
+
<td><center><strong>(F1)</strong></center></td>
|
570 |
+
<td><center><strong>(Spearman)</strong></center></td>
|
571 |
+
<td><center><strong>(Pearson)</strong></center></td>
|
572 |
+
<td><center><strong>(Spearman)</strong></center></td>
|
573 |
+
<td><center><strong>(Pearson)</strong></center></td>
|
574 |
+
</tr>
|
575 |
+
<tr>
|
576 |
+
<td>gemma-2-9b-it</td><td><center>37.56</center></td><td><center>57.48</center></td><td><center>-</center></td><td><center>-</center></td><td><center>71.39</center></td><td><center>71.73</center></td><td><center>-</center></td><td><center>-</center></td>
|
577 |
+
</tr>
|
578 |
+
<tr>
|
579 |
+
<td>RoGemma2-9b-Instruct-2024-10-09</td><td><center><strong>51.37</strong></center></td><td><center><strong>70.74</strong></center></td><td><center>-</center></td><td><center>-</center></td><td><center>77.15</center></td><td><center>77.10</center></td><td><center>-</center></td><td><center>-</center></td>
|
580 |
+
</tr>
|
581 |
+
<tr>
|
582 |
+
<td><em>RoGemma2-9b-Instruct-DPO-2024-10-09</em></td><td><center><em>32.42</em></center></td><td><center><em>58.68</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em><strong>80.82</strong></em></center></td><td><center><em><strong>81.50</strong></em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
|
583 |
+
</tr>
|
584 |
+
</tbody>
|
585 |
+
</table>
|
586 |
+
|
587 |
+
## MT-Bench
|
588 |
+
|
589 |
+
<table>
|
590 |
+
<tbody>
|
591 |
+
<tr>
|
592 |
+
<td><strong>Model</strong></td>
|
593 |
+
<td><strong><center>Average</center></strong></td>
|
594 |
+
<td><strong><center>1st turn</center></strong></td>
|
595 |
+
<td><strong><center>2nd turn</center></strong></td>
|
596 |
+
<td><strong><center>Answers in Ro</center></strong></td>
|
597 |
+
</tr>
|
598 |
+
<tr>
|
599 |
+
<td>gemma-2-9b-it</td><td><center><strong>7.50</strong></center></td><td><center><strong>7.91</strong></center></td><td><center><strong>7.09</strong></center></td><td><center>159/160</center></td>
|
600 |
+
</tr>
|
601 |
+
<tr>
|
602 |
+
<td>RoGemma2-9b-Instruct-2024-10-09</td><td><center>6.08</center></td><td><center>6.78</center></td><td><center>5.39</center></td><td><center><strong>160/160</strong></center></td>
|
603 |
+
</tr>
|
604 |
+
<tr>
|
605 |
+
<td><em>RoGemma2-9b-Instruct-DPO-2024-10-09</em></td><td><center><em>6.77</em></center></td><td><center><em>7.24</em></center></td><td><center><em>6.30</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
|
606 |
+
</tr>
|
607 |
+
</tbody>
|
608 |
+
</table>
|
609 |
+
|
610 |
+
## RoCulturaBench
|
611 |
+
|
612 |
+
<table>
|
613 |
+
<tbody>
|
614 |
+
<tr>
|
615 |
+
<td><strong>Model</strong></td>
|
616 |
+
<td><strong><center>Average</center></strong></td>
|
617 |
+
<td><strong><center>Answers in Ro</center></strong></td>
|
618 |
+
</tr>
|
619 |
+
<tr>
|
620 |
+
<td>gemma-2-9b-it</td><td><center><strong>5.68</strong></center></td><td><center><strong>100/100</strong></center></td>
|
621 |
+
</tr>
|
622 |
+
<tr>
|
623 |
+
<td>RoGemma2-9b-Instruct-2024-10-09</td><td><center>4.20</center></td><td><center><strong>100/100</strong></center></td>
|
624 |
+
</tr>
|
625 |
+
<tr>
|
626 |
+
<td><em>RoGemma2-9b-Instruct-DPO-2024-10-09</em></td><td><center><em>4.83</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
|
627 |
+
</tr>
|
628 |
+
</tbody>
|
629 |
+
</table>
|
630 |
+
|
631 |
+
|
632 |
+
## RoGemma2 Model Family
|
633 |
+
|
634 |
+
| Model | Link |
|
635 |
+
|--------------------|:--------:|
|
636 |
+
|RoGemma2-9b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-2024-10-09) |
|
637 |
+
|*RoGemma2-9b-Instruct-DPO-2024-10-09*| [link](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2024-10-09) |
|
638 |
+
|
639 |
+
|
640 |
+
## Citation
|
641 |
+
|
642 |
+
```
|
643 |
+
@misc{masala2024vorbecstiromanecsterecipetrain,
|
644 |
+
title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
|
645 |
+
author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
|
646 |
+
year={2024},
|
647 |
+
eprint={2406.18266},
|
648 |
+
archivePrefix={arXiv},
|
649 |
+
primaryClass={cs.CL},
|
650 |
+
url={https://arxiv.org/abs/2406.18266},
|
651 |
+
}
|
652 |
+
```
|
653 |
+
<!-- **APA:**
|
654 |
+
|
655 |
+
[More Information Needed] -->
|