File size: 24,598 Bytes
41682db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7c509f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41682db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7c509f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41682db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7c509f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41682db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7c509f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41682db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7c509f
41682db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30131bb
41682db
 
30131bb
41682db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30131bb
41682db
 
30131bb
41682db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30131bb
41682db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbf5e64
41682db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
---
license: cc-by-nc-4.0
language:
- ro
base_model:
- google/gemma-2-9b-it
datasets:
- OpenLLM-Ro/ro_sft_alpaca
- OpenLLM-Ro/ro_sft_alpaca_gpt4
- OpenLLM-Ro/ro_sft_dolly
- OpenLLM-Ro/ro_sft_selfinstruct_gpt4
- OpenLLM-Ro/ro_sft_norobots
- OpenLLM-Ro/ro_sft_orca
- OpenLLM-Ro/ro_sft_camel
- OpenLLM-Ro/ro_sft_oasst
- OpenLLM-Ro/ro_sft_ultrachat
model-index:
    - name: OpenLLM-Ro/RoGemma2-9b-Instruct-2024-10-09
      results:
        - task:
            type: text-generation
          dataset:
            name: RoMT-Bench
            type: RoMT-Bench
          metrics:
            - name: Score
              type: Score
              value: 6.08
        - task:
            type: text-generation
          dataset:
            name: RoCulturaBench
            type: RoCulturaBench
          metrics:
            - name: Score
              type: Score
              value: 4.20
        - task:
            type: text-generation
          dataset:
            name: Romanian_Academic_Benchmarks
            type: Romanian_Academic_Benchmarks
          metrics:
            - name: Average accuracy
              type: accuracy
              value: 57.06
        - task:
            type: text-generation
          dataset:
            name: OpenLLM-Ro/ro_arc_challenge
            type: OpenLLM-Ro/ro_arc_challenge
          metrics:
            - name: Average accuracy
              type: accuracy
              value: 56.20
        - task:
            type: text-generation
          dataset:
            name: OpenLLM-Ro/ro_mmlu
            type: OpenLLM-Ro/ro_mmlu
          metrics:
            - name: Average accuracy
              type: accuracy
              value: 62.98
        - task:
            type: text-generation
          dataset:
            name: OpenLLM-Ro/ro_winogrande
            type: OpenLLM-Ro/ro_winogrande
          metrics:
            - name: Average accuracy
              type: accuracy
              value: 71.00
        - task:
            type: text-generation
          dataset:
            name: OpenLLM-Ro/ro_hellaswag
            type: OpenLLM-Ro/ro_hellaswag
          metrics:
            - name: Average accuracy
              type: accuracy
              value: 60.52
        - task:
            type: text-generation
          dataset:
            name: OpenLLM-Ro/ro_gsm8k
            type: OpenLLM-Ro/ro_gsm8k
          metrics:
            - name: Average accuracy
              type: accuracy
              value: 37.86
        - task:
            type: text-generation
          dataset:
            name: OpenLLM-Ro/ro_truthfulqa
            type: OpenLLM-Ro/ro_truthfulqa
          metrics:
            - name: Average accuracy
              type: accuracy
              value: 53.77
        - task:
            type: text-generation
          dataset:
            name: LaRoSeDa_binary
            type: LaRoSeDa_binary
          metrics:
            - name: Average macro-f1
              type: macro-f1
              value: 96.19
        - task:
            type: text-generation
          dataset:
            name: LaRoSeDa_multiclass
            type: LaRoSeDa_multiclass
          metrics:
            - name: Average macro-f1
              type: macro-f1
              value: 62.49
        - task:
            type: text-generation
          dataset:
            name: LaRoSeDa_binary_finetuned
            type: LaRoSeDa_binary_finetuned
          metrics:
            - name: Average macro-f1
              type: macro-f1
              value: 98.93
        - task:
            type: text-generation
          dataset:
            name: LaRoSeDa_multiclass_finetuned
            type: LaRoSeDa_multiclass_finetuned
          metrics:
            - name: Average macro-f1
              type: macro-f1
              value: 88.33
        - task:
            type: text-generation
          dataset:
            name: WMT_EN-RO
            type: WMT_EN-RO
          metrics:
            - name: Average bleu
              type: bleu
              value: 25.74
        - task:
            type: text-generation
          dataset:
            name: WMT_RO-EN
            type: WMT_RO-EN
          metrics:
            - name: Average bleu
              type: bleu
              value: 23.16
        - task:
            type: text-generation
          dataset:
            name: WMT_EN-RO_finetuned
            type: WMT_EN-RO_finetuned
          metrics:
            - name: Average bleu
              type: bleu
              value: 28.43
        - task:
            type: text-generation
          dataset:
            name: WMT_RO-EN_finetuned
            type: WMT_RO-EN_finetuned
          metrics:
            - name: Average bleu
              type: bleu
              value: 40.94
        - task:
            type: text-generation
          dataset:
            name: XQuAD
            type: XQuAD
          metrics:
            - name: Average exact_match
              type: exact_match
              value: 51.37
        - task:
            type: text-generation
          dataset:
            name: XQuAD
            type: XQuAD
          metrics:
            - name: Average f1
              type: f1
              value: 70.74
        - task:
            type: text-generation
          dataset:
            name: XQuAD_finetuned
            type: XQuAD_finetuned
          metrics:
            - name: Average exact_match
              type: exact_match
              value: 50.00
        - task:
            type: text-generation
          dataset:
            name: XQuAD_finetuned
            type: XQuAD_finetuned
          metrics:
            - name: Average f1
              type: f1
              value: 64.10
        - task:
            type: text-generation
          dataset:
            name: STS
            type: STS
          metrics:
            - name: Average spearman
              type: spearman
              value: 77.15
        - task:
            type: text-generation
          dataset:
            name: STS
            type: STS
          metrics:
            - name: Average pearson
              type: pearson
              value: 77.10
        - task:
            type: text-generation
          dataset:
            name: STS_finetuned
            type: STS_finetuned
          metrics:
            - name: Average spearman
              type: spearman
              value: 89.45
        - task:
            type: text-generation
          dataset:
            name: STS_finetuned
            type: STS_finetuned
          metrics:
            - name: Average pearson
              type: pearson
              value: 89.89
        - task:
            type: text-generation
          dataset:
            name: RoMT-Bench
            type: RoMT-Bench
          metrics:
            - name: First turn
              type: Score
              value: 6.78
            - name: Second turn
              type: Score
              value: 5.39
        - task:
            type: text-generation
          dataset:
            name: OpenLLM-Ro/ro_arc_challenge
            type: OpenLLM-Ro/ro_arc_challenge
          metrics:
            - name: 0-shot 
              type: accuracy
              value: 53.30
            - name: 1-shot 
              type: accuracy
              value: 54.93
            - name: 3-shot 
              type: accuracy
              value: 57.07
            - name: 5-shot 
              type: accuracy
              value: 57.33
            - name: 10-shot 
              type: accuracy
              value: 57.16
            - name: 25-shot 
              type: accuracy
              value: 57.41
        - task:
            type: text-generation
          dataset:
            name: OpenLLM-Ro/ro_mmlu
            type: OpenLLM-Ro/ro_mmlu
          metrics:
            - name: 0-shot 
              type: accuracy
              value: 59.20
            - name: 1-shot 
              type: accuracy
              value: 62.47
            - name: 3-shot 
              type: accuracy
              value: 64.97
            - name: 5-shot 
              type: accuracy
              value: 65.30
        - task:
            type: text-generation
          dataset:
            name: OpenLLM-Ro/ro_winogrande
            type: OpenLLM-Ro/ro_winogrande
          metrics:
            - name: 0-shot 
              type: accuracy
              value: 68.67
            - name: 1-shot 
              type: accuracy
              value: 71.03
            - name: 3-shot 
              type: accuracy
              value: 71.90
            - name: 5-shot 
              type: accuracy
              value: 72.38
        - task:
            type: text-generation
          dataset:
            name: OpenLLM-Ro/ro_hellaswag
            type: OpenLLM-Ro/ro_hellaswag
          metrics:
            - name: 0-shot 
              type: accuracy
              value: 62.29
            - name: 1-shot 
              type: accuracy
              value: 63.12
            - name: 3-shot 
              type: accuracy
              value: 61.34
            - name: 5-shot 
              type: accuracy
              value: 55.62
            - name: 10-shot 
              type: accuracy
              value: 60.25
        - task:
            type: text-generation
          dataset:
            name: OpenLLM-Ro/ro_gsm8k
            type: OpenLLM-Ro/ro_gsm8k
          metrics:
            - name: 1-shot 
              type: accuracy
              value: 36.77
            - name: 3-shot 
              type: accuracy
              value: 32.83
            - name: 5-shot 
              type: accuracy
              value: 43.97
        - task:
            type: text-generation
          dataset:
            name: LaRoSeDa_binary
            type: LaRoSeDa_binary
          metrics:
            - name: 0-shot 
              type: macro-f1
              value: 92.63
            - name: 1-shot 
              type: macro-f1
              value: 95.86
            - name: 3-shot 
              type: macro-f1
              value: 98.03
            - name: 5-shot 
              type: macro-f1
              value: 98.23
        - task:
            type: text-generation
          dataset:
            name: LaRoSeDa_multiclass
            type: LaRoSeDa_multiclass
          metrics:
            - name: 0-shot 
              type: macro-f1
              value: 38.51
            - name: 1-shot 
              type: macro-f1
              value: 69.70
            - name: 3-shot 
              type: macro-f1
              value: 71.38
            - name: 5-shot 
              type: macro-f1
              value: 70.37
        - task:
            type: text-generation
          dataset:
            name: WMT_EN-RO
            type: WMT_EN-RO
          metrics:
            - name: 0-shot 
              type: bleu
              value: 11.87
            - name: 1-shot 
              type: bleu
              value: 29.30
            - name: 3-shot 
              type: bleu
              value: 30.80
            - name: 5-shot 
              type: bleu
              value: 30.99
        - task:
            type: text-generation
          dataset:
            name: WMT_RO-EN
            type: WMT_RO-EN
          metrics:
            - name: 0-shot 
              type: bleu
              value: 1.03
            - name: 1-shot 
              type: bleu
              value: 22.25
            - name: 3-shot 
              type: bleu
              value: 32.75
            - name: 5-shot 
              type: bleu
              value: 36.61
        - task:
            type: text-generation
          dataset:
            name: XQuAD_EM
            type: XQuAD_EM
          metrics:
            - name: 0-shot 
              type: exact_match
              value: 52.60
            - name: 1-shot 
              type: exact_match
              value: 52.94
            - name: 3-shot 
              type: exact_match
              value: 49.66
            - name: 5-shot 
              type: exact_match
              value: 50.25
        - task:
            type: text-generation
          dataset:
            name: XQuAD_F1
            type: XQuAD_F1
          metrics:
            - name: 0-shot 
              type: f1
              value: 71.11
            - name: 1-shot 
              type: f1
              value: 71.67
            - name: 3-shot 
              type: f1
              value: 69.03
            - name: 5-shot 
              type: f1
              value: 71.15
        - task:
            type: text-generation
          dataset:
            name: STS_Spearman
            type: STS_Spearman
          metrics:
            - name: 1-shot 
              type: spearman
              value: 78.03
            - name: 3-shot 
              type: spearman
              value: 81.53
            - name: 5-shot 
              type: spearman
              value: 71.88
        - task:
            type: text-generation
          dataset:
            name: STS_Pearson
            type: STS_Pearson
          metrics:
            - name: 1-shot 
              type: pearson
              value: 79.09
            - name: 3-shot 
              type: pearson
              value: 80.89
            - name: 5-shot 
              type: pearson
              value: 71.33


---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->
This model points/is identical to [RoGemma2-9b-Instruct-2024-10-09](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-2024-10-09).


RoGemma2 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 9B model**. Links to other models can be found at the bottom of this page.

## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->
OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.


- **Developed by:** OpenLLM-Ro
<!-- - **Funded by [optional]:** [More Information Needed] -->
<!-- - **Shared by [optional]:** [More Information Needed] -->
<!-- - **Model type:** [More Information Needed] -->
- **Language(s):** Romanian
- **License:** cc-by-nc-4.0
- **Finetuned from model:** [gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it)
- **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel), [RoOpenAssistant](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_oasst), [RoUltraChat](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_ultrachat)


### Model Sources

<!-- Provide the basic links for the model. -->

- **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
- **Paper:** https://arxiv.org/abs/2406.18266

## Intended Use

### Intended Use Cases

RoGemma2 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.



## How to Get Started with the Model

Use the code below to get started with the model.

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoGemma2-9b-Instruct")
model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoGemma2-9b-Instruct")

instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
chat = [
        {"role": "user", "content": instruction},
        ]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")

inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
outputs = model.generate(input_ids=inputs, max_new_tokens=128)
print(tokenizer.decode(outputs[0]))
```

## Academic Benchmarks

<table>
<tbody>
<tr>
<td><strong>Model</strong></td>
<td><strong><center>Average</center></strong></td>
<td><strong><center>ARC</center></strong></td>
<td><strong><center>MMLU</center></strong></td>
<td><strong><center>Winogrande</center></strong></td>
<td><strong><center>Hellaswag</center></strong></td>
<td><strong><center>GSM8k</center></strong></td>
<td><strong><center>TruthfulQA</center></strong></td>
</tr>
<tr>
<td>gemma-2-9b-it</td><td><center>56.22</center></td><td><center>50.33</center></td><td><center><strong>64.01</strong></center></td><td><center>64.88</center></td><td><center><strong>63.11</strong></center></td><td><center>41.95</center></td><td><center>53.03</center></td>
</tr>
<tr>
<td><em>RoGemma2-9b-Instruct-2024-10-09</em></td><td><center><em>57.06</em></center></td><td><center><em><strong>56.20</strong></em></center></td><td><center><em>62.98</em></center></td><td><center><em><strong>71.00</strong></em></center></td><td><center><em>60.52</em></center></td><td><center><em>37.86</em></center></td><td><center><em><strong>53.77</strong></em></center></td>
</tr>
<tr>
<td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center><strong>59.08</strong></center></td><td><center>54.10</center></td><td><center>63.41</center></td><td><center>70.02</center></td><td><center>59.35</center></td><td><center><strong>57.24</strong></center></td><td><center>50.39</center></td>
</tr>
</tbody>
</table>


## Downstream tasks

<table>
<tbody>
<tr>
<td></td>
<td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
<td colspan="4"><center><strong>WMT</strong></center></td>
</tr>
<tr>
<td></td>
<td colspan="2"><center><strong>Few-shot</strong></center></td>
<td colspan="2"><center><strong>Finetuned</strong></center></td>
<td colspan="2"><center><strong>Few-shot</strong></center></td>
<td colspan="2"><center><strong>Finetuned</strong></center></td>
</tr>
<tr>
<td><strong>Model</strong></td>
<td><center><strong>Binary<br>(Macro F1)</strong></center></td>
<td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
<td><center><strong>Binary<br>(Macro F1)</strong></center></td>
<td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
<td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
<td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
<td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
<td><center><strong>RO-EN<br>(Bleu)</strong></center>
</tr>
<tr>
<td>gemma-2-9b-it</td><td><center>90.82</center></td><td><center>52.51</center></td><td><center><strong>98.97</strong></center></td><td><center>86.02</center></td><td><center>19.97</center></td><td><center><strong>28.94</strong></center></td><td><center>27.94</center></td><td><center><strong>41.61</strong></center></td>
</tr>
<tr>
<td><em>RoGemma2-9b-Instruct-2024-10-09</em></td><td><center><em>96.19</em></center></td><td><center><em>62.49</em></center></td><td><center><em>98.93</em></center></td><td><center><em><strong>88.33</strong></em></center></td><td><center><em>25.74</em></center></td><td><center><em>23.16</em></center></td><td><center><em><strong>28.43</strong></em></center></td><td><center><em>40.94</em></center></td>
</tr>
<tr>
<td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center><strong>97.74</strong></center></td><td><center><strong>67.40</strong></center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>27.32</strong></center></td><td><center>15.96</center></td><td><center>-</center></td><td><center>-</center></td>
</tr>
</tbody>
</table>


<table>
<tbody>
<tr>
<td></td>
<td colspan="4"><center><strong>XQuAD</strong></center></td>
<td colspan="4"><center><strong>STS</strong></center></td>
</tr>
<tr>
<td></td>
<td colspan="2"><center><strong>Few-shot</strong></center></td>
<td colspan="2"><center><strong>Finetuned</strong></center></td>
<td colspan="2"><center><strong>Few-shot</strong></center></td>
<td colspan="2"><center><strong>Finetuned</strong></center></td>
</tr>
<tr>
<td><strong>Model</strong></td>
<td><center><strong>(EM)</strong></center></td>
<td><center><strong>(F1)</strong></center></td>
<td><center><strong>(EM)</strong></center></td>
<td><center><strong>(F1)</strong></center></td>
<td><center><strong>(Spearman)</strong></center></td>
<td><center><strong>(Pearson)</strong></center></td>
<td><center><strong>(Spearman)</strong></center></td>
<td><center><strong>(Pearson)</strong></center></td>
</tr>
<tr>
<td>gemma-2-9b-it</td><td><center>37.56</center></td><td><center>57.48</center></td><td><center><strong>71.09</strong></center></td><td><center><strong>84.78</strong></center></td><td><center>71.39</center></td><td><center>71.73</center></td><td><center>89.07</center></td><td><center>89.29</center></td>
</tr>
<tr>
<td><em>RoGemma2-9b-Instruct-2024-10-09</em></td><td><center><em><strong>51.37</strong></em></center></td><td><center><em><strong>70.74</strong></em></center></td><td><center><em>50.00</em></center></td><td><center><em>64.10</em></center></td><td><center><em>77.15</em></center></td><td><center><em>77.10</em></center></td><td><center><em><strong>89.45</strong></em></center></td><td><center><em><strong>89.89</strong></em></center></td>
</tr>
<tr>
<td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center>32.42</center></td><td><center>58.68</center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>80.82</strong></center></td><td><center><strong>81.50</strong></center></td><td><center>-</center></td><td><center>-</center></td>
</tr>
</tbody>
</table>


## MT-Bench

<table>
<tbody>
<tr>
<td><strong>Model</strong></td>
<td><strong><center>Average</center></strong></td>
<td><strong><center>1st turn</center></strong></td>
<td><strong><center>2nd turn</center></strong></td>
<td><strong><center>Answers in Ro</center></strong></td>
</tr>
<tr>
<td>gemma-2-9b-it</td><td><center><strong>7.50</strong></center></td><td><center><strong>7.91</strong></center></td><td><center><strong>7.09</strong></center></td><td><center>159/160</center></td>
</tr>
<tr>
<td><em>RoGemma2-9b-Instruct-2024-10-09</em></td><td><center><em>6.08</em></center></td><td><center><em>6.78</em></center></td><td><center><em>5.39</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
</tr>
<tr>
<td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center>6.77</center></td><td><center>7.24</center></td><td><center>6.30</center></td><td><center><strong>160/160</strong></center></td>
</tr>
</tbody>
</table>



## RoCulturaBench

<table>
<tbody>
<tr>
<td><strong>Model</strong></td>
<td><strong><center>Average</center></strong></td>
<td><strong><center>Answers in Ro</center></strong></td>
</tr>
<tr>
<td>gemma-2-9b-it</td><td><center><strong>5.68</strong></center></td><td><center><strong>100/100</strong></center></td>
</tr>
<tr>
<td><em>RoGemma2-9b-Instruct-2024-10-09</em></td><td><center><em>4.20</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
</tr>
<tr>
<td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center>4.83</center></td><td><center><strong>100/100</strong></center></td>
</tr>
</tbody>
</table>

## RoGemma2 Model Family

| Model              | Link  |
|--------------------|:--------:|
|*RoGemma2-9b-Instruct-2024-10-09*| [link](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-2024-10-09) |
|RoGemma2-9b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2024-10-09) |


## Citation 

```
@misc{masala2024vorbecstiromanecsterecipetrain,
      title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions}, 
      author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
      year={2024},
      eprint={2406.18266},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2406.18266}, 
}
```
<!-- **APA:**

[More Information Needed]  -->