--- license: llama2 language: - ro base_model: meta-llama/Llama-2-7b-hf datasets: - uonlp/CulturaX model-index: - name: OpenLLM-Ro/RoLlama2-7b-Base-2024-05-14 results: - task: type: text-generation dataset: name: Romanian_Academic_Benchmarks type: Romanian_Academic_Benchmarks metrics: - name: Average accuracy type: accuracy value: 38.03 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_arc_challenge type: OpenLLM-Ro/ro_arc_challenge metrics: - name: Average accuracy type: accuracy value: 37.95 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_mmlu type: OpenLLM-Ro/ro_mmlu metrics: - name: Average accuracy type: accuracy value: 27.22 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_winogrande type: OpenLLM-Ro/ro_winogrande metrics: - name: Average accuracy type: accuracy value: 59.29 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_hellaswag type: OpenLLM-Ro/ro_hellaswag metrics: - name: Average accuracy type: accuracy value: 57.22 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_gsm8k type: OpenLLM-Ro/ro_gsm8k metrics: - name: Average accuracy type: accuracy value: 2.53 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_truthfulqa type: OpenLLM-Ro/ro_truthfulqa metrics: - name: Average accuracy type: accuracy value: 44.00 - task: type: text-generation dataset: name: LaRoSeDa_binary type: LaRoSeDa_binary metrics: - name: Average macro-f1 type: macro-f1 value: 83.25 - task: type: text-generation dataset: name: LaRoSeDa_multiclass type: LaRoSeDa_multiclass metrics: - name: Average macro-f1 type: macro-f1 value: 61.04 - task: type: text-generation dataset: name: LaRoSeDa_binary_finetuned type: LaRoSeDa_binary_finetuned metrics: - name: Average macro-f1 type: macro-f1 value: 98.97 - task: type: text-generation dataset: name: LaRoSeDa_multiclass_finetuned type: LaRoSeDa_multiclass_finetuned metrics: - name: Average macro-f1 type: macro-f1 value: 87.72 - task: type: text-generation dataset: name: WMT_EN-RO type: WMT_EN-RO metrics: - name: Average bleu type: bleu value: 10.01 - task: type: text-generation dataset: name: WMT_RO-EN type: WMT_RO-EN metrics: - name: Average bleu type: bleu value: 13.03 - task: type: text-generation dataset: name: WMT_EN-RO_finetuned type: WMT_EN-RO_finetuned metrics: - name: Average bleu type: bleu value: 27.85 - task: type: text-generation dataset: name: WMT_RO-EN_finetuned type: WMT_RO-EN_finetuned metrics: - name: Average bleu type: bleu value: 39.30 - task: type: text-generation dataset: name: XQuAD type: XQuAD metrics: - name: Average exact_match type: exact_match value: 30.15 - task: type: text-generation dataset: name: XQuAD type: XQuAD metrics: - name: Average f1 type: f1 value: 47.03 - task: type: text-generation dataset: name: XQuAD_finetuned type: XQuAD_finetuned metrics: - name: Average exact_match type: exact_match value: 67.06 - task: type: text-generation dataset: name: XQuAD_finetuned type: XQuAD_finetuned metrics: - name: Average f1 type: f1 value: 79.96 - task: type: text-generation dataset: name: STS type: STS metrics: - name: Average spearman type: spearman value: 7.89 - task: type: text-generation dataset: name: STS type: STS metrics: - name: Average pearson type: pearson value: 7.98 - task: type: text-generation dataset: name: STS_finetuned type: STS_finetuned metrics: - name: Average spearman type: spearman value: 71.75 - task: type: text-generation dataset: name: STS_finetuned type: STS_finetuned metrics: - name: Average pearson type: pearson value: 71.99 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_arc_challenge type: OpenLLM-Ro/ro_arc_challenge metrics: - name: 0-shot type: accuracy value: 35.56 - name: 1-shot type: accuracy value: 36.42 - name: 3-shot type: accuracy value: 38.56 - name: 5-shot type: accuracy value: 38.39 - name: 10-shot type: accuracy value: 39.07 - name: 25-shot type: accuracy value: 39.67 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_mmlu type: OpenLLM-Ro/ro_mmlu metrics: - name: 0-shot type: accuracy value: 25.82 - name: 1-shot type: accuracy value: 25.48 - name: 3-shot type: accuracy value: 27.61 - name: 5-shot type: accuracy value: 29.96 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_winogrande type: OpenLLM-Ro/ro_winogrande metrics: - name: 0-shot type: accuracy value: 58.72 - name: 1-shot type: accuracy value: 58.88 - name: 3-shot type: accuracy value: 60.38 - name: 5-shot type: accuracy value: 59.19 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_hellaswag type: OpenLLM-Ro/ro_hellaswag metrics: - name: 0-shot type: accuracy value: 55.85 - name: 1-shot type: accuracy value: 57.06 - name: 3-shot type: accuracy value: 57.52 - name: 5-shot type: accuracy value: 57.89 - name: 10-shot type: accuracy value: 57.79 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_gsm8k type: OpenLLM-Ro/ro_gsm8k metrics: - name: 1-shot type: accuracy value: 0.00 - name: 3-shot type: accuracy value: 2.96 - name: 5-shot type: accuracy value: 4.62 - task: type: text-generation dataset: name: LaRoSeDa_binary type: LaRoSeDa_binary metrics: - name: 0-shot type: macro-f1 value: 42.78 - name: 1-shot type: macro-f1 value: 98.00 - name: 3-shot type: macro-f1 value: 95.13 - name: 5-shot type: macro-f1 value: 97.07 - task: type: text-generation dataset: name: LaRoSeDa_multiclass type: LaRoSeDa_multiclass metrics: - name: 0-shot type: macro-f1 value: 46.41 - name: 1-shot type: macro-f1 value: 67.36 - name: 3-shot type: macro-f1 value: 65.16 - name: 5-shot type: macro-f1 value: 65.23 - task: type: text-generation dataset: name: WMT_EN-RO type: WMT_EN-RO metrics: - name: 0-shot type: bleu value: 4.45 - name: 1-shot type: bleu value: 8.61 - name: 3-shot type: bleu value: 12.25 - name: 5-shot type: bleu value: 14.73 - task: type: text-generation dataset: name: WMT_RO-EN type: WMT_RO-EN metrics: - name: 0-shot type: bleu value: 1.29 - name: 1-shot type: bleu value: 10.78 - name: 3-shot type: bleu value: 16.82 - name: 5-shot type: bleu value: 23.24 - task: type: text-generation dataset: name: XQuAD_EM type: XQuAD_EM metrics: - name: 0-shot type: exact_match value: 5.29 - name: 1-shot type: exact_match value: 33.95 - name: 3-shot type: exact_match value: 39.24 - name: 5-shot type: exact_match value: 42.10 - task: type: text-generation dataset: name: XQuAD_F1 type: XQuAD_F1 metrics: - name: 0-shot type: f1 value: 16.17 - name: 1-shot type: f1 value: 51.84 - name: 3-shot type: f1 value: 58.82 - name: 5-shot type: f1 value: 61.29 - task: type: text-generation dataset: name: STS_Spearman type: STS_Spearman metrics: - name: 1-shot type: spearman value: -1.74 - name: 3-shot type: spearman value: 15.47 - name: 5-shot type: spearman value: 9.93 - task: type: text-generation dataset: name: STS_Pearson type: STS_Pearson metrics: - name: 1-shot type: pearson value: -1.40 - name: 3-shot type: pearson value: 15.00 - name: 5-shot type: pearson value: 10.33 --- # Model Card for Model ID RoLlama2 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **foundational 7B model**. Links to other models can be found at the bottom of this page. ## Model Details ### Model Description OpenLLM represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants. - **Developed by:** OpenLLM-Ro - **Language(s):** Romanian - **License:** Llama2 Community License Agreement - **Continual pretrained from model:** [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf) - **Trained using:** [CulturaX](https://huggingface.co/datasets/uonlp/CulturaX) ### Model Sources - **Repository:** https://github.com/OpenLLM-Ro/llama-recipes - **Paper:** https://arxiv.org/abs/2406.18266 ## Intended Use ### Intended Use Cases RoLlama2 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat. ### Out-of-Scope Use Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama2-7b-Base-2024-05-14") model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama2-7b-Base-2024-05-14") input_text = "Mihai Eminescu a fost " input_ids = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**input_ids, max_new_tokens=100) print(tokenizer.decode(outputs[0])) ``` ## Academic Benchmarks
Model
Average
ARC
MMLU
Winogrande
Hellaswag
GSM8k
TruthfulQA
Llama-2-7b
37.04
36.05
33.66
57.56
48.00
4.75
42.22
RoLlama2-7b-Base-2024-05-14
38.03
37.95
27.22
59.29
57.22
2.53
44.00
## Downstream Tasks
LaRoSeDa
WMT
Few-shot
Finetuned
Few-shot
Finetuned
Model
Binary
(Macro F1)
Multiclass
(Macro F1)
Binary
(Macro F1)
Multiclass
(Macro F1)
EN-RO
(Bleu)
RO-EN
(Bleu)
EN-RO
(Bleu)
RO-EN
(Bleu)
Llama-2-7b
93.19
54.11
98.43
87.22
14.90
26.61
24.95
39.09
RoLlama2-7b-Base-2024-05-14
83.25
61.04
98.97
87.72
10.01
13.03
27.85
39.30
XQuAD
STS
Few-shot
Finetuned
Few-shot
Finetuned
Model
(EM)
(F1)
(EM)
(F1)
(Spearman)
(Pearson)
(Spearman)
(Pearson)
Llama-2-7b
38.91
56.82
65.46
79.42
9.08
9.07
79.93
81.08
RoLlama2-7b-Base-2024-05-14
30.15
47.03
67.06
79.96
7.89
7.98
71.75
71.99
## RoLlama2 Model Family | Model | Link | |--------------------|:--------:| |RoLlama2-7b-Base-2024-05-14 | [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Base-2024-05-14) | |RoLlama2-7b-Instruct-2024-05-14 | [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Instruct-2024-05-14) | |*RoLlama2-7b-Instruct-2024-10-09*| [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Instruct-2024-10-09) | |RoLlama2-7b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Instruct-DPO-2024-10-09) | ## Citation ``` @misc{masala2024vorbecstiromanecsterecipetrain, title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions}, author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea}, year={2024}, eprint={2406.18266}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2406.18266}, } ```