File size: 3,542 Bytes
d1fbbc2 68d61d8 d1fbbc2 68d61d8 d1fbbc2 68d61d8 d1fbbc2 68d61d8 d1fbbc2 68d61d8 d1fbbc2 68d61d8 d1fbbc2 68d61d8 d1fbbc2 68d61d8 d1fbbc2 68d61d8 d1fbbc2 68d61d8 d1fbbc2 68d61d8 d1fbbc2 68d61d8 d1fbbc2 68d61d8 d1fbbc2 68d61d8 d1fbbc2 de77249 d1fbbc2 68d61d8 d1fbbc2 68d61d8 992659c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
---
library_name: transformers
tags:
- chess
license: mit
language:
- en
---
# Model Card for Model ID
The base model, Mitral-7B-v1, has been fine-tuned to improve its reasoning, game analysis, and chess understanding capabilities, including proficiency in Algebraic Notation and FEN (Forsyth-Edwards Notation). This enhancement aims to create a robust AI system architecture that can integrate various tools seamlessly, boosting cognitive abilities within the controlled environment of chess.
The full work can be accessed [here](__link__to__add__)
### Model Description
- **Developed by:** Danny Xu, Carlos Kuhn, Muntasir Adnan
- **Funded by:** OpenSI
- **Model type:** Transformer based
- **License:** MIT
- **Finetuned from model:** Mistral-7B-v0.1
-
### Model Sources
- **Repository:** https://github.com/TheOpenSI/cognitive_AI_experiments
- **Paper:** [Unleashing Artificial Cognition: Integrating Multiple AISystems](__link__to__add__)
## Uses
### Direct Use
- Chess analysis
- Meausre cognition qualities in a controlled environment
### Downstream Use
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
- AGI
- Cognition capability of AI Systems
## How to Get Started with the Model
The model card contains only the LoRA adapter. To use it, load the adapter with the base Mistral model
```
model = AutoModelForCausalLM.from_pretrained(
base_model,
quantization_config=bnb_config
)
lora_repo = "OpenSI/cognitive_AI_finetune_3"
adapter_config = PeftConfig.from_pretrained(lora_repo)
openSI_chess = PeftModel.from_pretrained(model, lora_model_name)
```
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
- Analysis
- Probable winner
- Next move prediction
- FEN parsing
- Capture analysis
#### Training Hyperparameters
- **Training regime:**
```
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16)
model_args = TrainingArguments(
output_dir="mistral_7b",
num_train_epochs=3,
# max_steps=50,
per_device_train_batch_size=4,
gradient_accumulation_steps=2,
gradient_checkpointing=True,
optim="paged_adamw_32bit",
logging_steps=20,
save_strategy="epoch",
learning_rate=2e-4,
bf16=True,
tf32=True,
max_grad_norm=0.3,
warmup_ratio=0.03,
lr_scheduler_type="constant",
disable_tqdm=False
)
```
## Evaluation
#### Testing Data
Test dataset can be accessed here - [OpenSI Cognitive_AI](https://github.com/TheOpenSI/cognitive_AI_experiments/tree/master/data/test_framework)
#### Metrics
- Memory
- Perception
- Attention
- Reasoning
- Anticipation
### Results
<table>
<thead>
<tr>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<img src="./radar_plot.PNG" alt="Evaluation">
</td>
</tr>
</tbody>
</table>
#### Hardware
Nvidia RTX 3090
## Citation
```
@misc{Adnan2024,
title = {Unleashing Artificial Cognition: Integrating Multiple AI Systems},
author = {Muntasir Adnan and Buddhi Gamage and Zhiwei Xu and Damith Herath and Carlos C. N. Kuhn},
year = {2024},
eprint = {2408.04910},
archivePrefix = {arXiv}
}
``` |