--- license: mit tags: - text-to-audio - controlnet --- # EzAudio: Enhancing Text-to-Audio Generation with Efficient Diffusion Transformer 🟣 EzAudio is a diffusion-based text-to-audio generation model. Designed for real-world audio applications, EzAudio brings together high-quality audio synthesis with lower computational demands. 🎛 Play EzAudio on Hugging Face Space: [EzAudio: Text-to-Audio Generation, Editing, and Inpainting](https://huggingface.co/spaces/OpenSound/EzAudio) 🎮 EzAudio-ControlNet is available: [EzAudio-ControlNet](https://huggingface.co/spaces/OpenSound/EzAudio-ControlNet)! ## Installation Clone the repository: ``` git clone git@github.com:haidog-yaqub/EzAudio.git ``` Install the dependencies: ``` cd EzAudio pip install -r requirements.txt ``` Download checkponts from: [https://huggingface.co/OpenSound/EzAudio](https://huggingface.co/OpenSound/EzAudio) ## Usage You can use the model with the following code: ```python from api.ezaudio import load_models, generate_audio # model and config paths config_name = 'ckpts/ezaudio-xl.yml' ckpt_path = 'ckpts/s3/ezaudio_s3_xl.pt' vae_path = 'ckpts/vae/1m.pt' # save_path = 'output/' device = 'cuda' if torch.cuda.is_available() else 'cpu' # load model (autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params) = load_models(config_name, ckpt_path, vae_path, device) prompt = "a dog barking in the distance" sr, audio = generate_audio(prompt, autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params, device) ``` ## Todo - [x] Release Gradio Demo along with checkpoints [EzAudio Space](https://huggingface.co/spaces/OpenSound/EzAudio) - [x] Release ControlNet Demo along with checkpoints [EzAudio ControlNet Space](https://huggingface.co/spaces/OpenSound/EzAudio-ControlNet) - [x] Release inference code - [ ] Release checkpoints for stage1 and stage2 - [ ] Release training pipeline and dataset ## Reference If you find the code useful for your research, please consider citing: ```bibtex @article{hai2024ezaudio, title={EzAudio: Enhancing Text-to-Audio Generation with Efficient Diffusion Transformer}, author={Hai, Jiarui and Xu, Yong and Zhang, Hao and Li, Chenxing and Wang, Helin and Elhilali, Mounya and Yu, Dong}, journal={arXiv preprint arXiv:2409.10819}, year={2024} } ``` ## Acknowledgement Some code are borrowed from or inspired by: [U-Vit](https://github.com/baofff/U-ViT), [Pixel-Art](https://github.com/PixArt-alpha/PixArt-alpha), [Huyuan-DiT](https://github.com/Tencent/HunyuanDiT), and [Stable Audio](https://github.com/Stability-AI/stable-audio-tools).