File size: 51,399 Bytes
ac29af1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch OpenMoE model."""
import math
from typing import List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.models.llama.configuration_llama import LlamaConfig
# from .llama_attn import LlamaAttention

from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)

from colossalai.kernel.cuda_native.mha.flash_attn_2 import HAS_FLASH_ATTN
from colossalai.kernel.triton.llama_act_combine_kernel import HAS_TRITON
from colossalai.moe.layers import SparseMLP
from colossalai.moe.manager import MOE_MANAGER
from colossalai.moe.utils import get_activation, set_moe_args



if HAS_TRITON:
    from colossalai.kernel.triton.llama_act_combine_kernel import LlamaActCombine

logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "LlamaConfig"


def set_openmoe_args(
    config: LlamaConfig,
    num_experts: int,
    moe_layer_interval: int,
    router_topk: int = 2,
    router_capacity_factor_train: float = 1.25,
    router_capacity_factor_eval: float = 2.0,
    router_min_capacity: int = 4,
    router_noisy_policy: str = None,
    router_drop_tks: bool = True,
    router_aux_loss_factor: float = 0.01,
    router_z_loss_factor: float = 0.0001,
    mlp_gated: bool = True,
    label_smoothing: float = 0.001,
    z_loss_factor: float = 0.01,
    enable_load_balance: bool = False,
    load_balance_tolerance: float = 0.1,
    load_balance_beam_width: int = 8,
    load_balance_group_swap_factor: float = 0.4,
    enable_kernel: bool = False,
    enable_comm_overlap: bool = False,
    enable_hierarchical_alltoall: bool = False,
) -> None:
    """
    MoE related arguments.
    It inserts the MoE arguments into the Llama config.

    Args:
        config (LlamaConfig): Transformers Llama config.
        num_experts (int, optional): Number of experts.
        moe_layer_interval (int, optional): The interval moe layer.
        router_topk (int, optional): Moe router top k. Defaults to 2.
        router_capacity_factor_train (float, optional): Moe router max capacity for train. Defaults to 1.25.
        router_capacity_factor_eval (float, optional): Moe router max capacity for eval. Defaults to 2.0.
        router_min_capacity (int, optional): Moe router min capacity. Defaults to 4.
        router_noisy_policy (str, optional): Moe router noisy policy. You can choose [Jitter, Gaussian, None]. Defaults to None.
        router_drop_tks (bool, optional): Whether moe router drop tokens which exceed max capacity. Defaults to True.
        router_aux_loss_factor (float, optional): Moe router aux loss. You can refer to STMoE for details. Defaults to 0.01.
        router_z_loss_factor (float, optional): Moe router z loss. You can refer to STMoE for details. Defaults to 0.01.
        mlp_gated (bool, optional): Use gate in mlp. Defaults to True.
        label_smoothing (float, optional): Label smoothing. Defaults to 0.001.
        z_loss_factor (float, optional): The final outputs' classification z loss factor. Defaults to 0.01.
        enable_load_balance (bool, optional): Expert load balance. Defaults to False.
        load_balance_tolerance (float, optional): Expert load balance search's difference tolerance. Defaults to 0.1.
        load_balance_beam_width (int, optional): Expert load balance search's beam width. Defaults to 8.
        load_balance_group_swap_factor (float, optional): Expert load balance group swap factor. Longer value encourages less swap. Defaults to 0.4.
        enable_kernel (bool, optional): Use kernel optimization. Defaults to False.
        enable_comm_overlap (bool, optional): Use communication overlap for MoE. Recommended to enable for muiti-node training. Defaults to False.
        enable_hierarchical_alltoall (bool, optional): Use hierarchical alltoall for MoE. Defaults to False.
    """
    moe_args = dict(
        num_experts=num_experts,
        moe_layer_interval=moe_layer_interval,
        router_topk=router_topk,
        router_capacity_factor_train=router_capacity_factor_train,
        router_capacity_factor_eval=router_capacity_factor_eval,
        router_min_capacity=router_min_capacity,
        router_noisy_policy=router_noisy_policy,
        router_drop_tks=router_drop_tks,
        router_aux_loss_factor=router_aux_loss_factor,
        router_z_loss_factor=router_z_loss_factor,
        mlp_gated=mlp_gated,
        label_smoothing=label_smoothing,
        z_loss_factor=z_loss_factor,
        enable_load_balance=enable_load_balance,
        load_balance_tolerance=load_balance_tolerance,
        load_balance_beam_width=load_balance_beam_width,
        load_balance_group_swap_factor=load_balance_group_swap_factor,
        enable_kernel=enable_kernel,
        enable_comm_overlap=enable_comm_overlap,
        enable_hierarchical_alltoall=enable_hierarchical_alltoall,
    )
    set_moe_args(config, moe_args)


# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(
    input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
):
    """
    Make causal mask used for bi-directional self-attention.
    """
    bsz, tgt_len = input_ids_shape
    mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
    mask_cond = torch.arange(mask.size(-1), device=device)
    mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
    mask = mask.to(dtype)

    if past_key_values_length > 0:
        mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
    return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)


# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
    """
    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
    """
    bsz, src_len = mask.size()
    tgt_len = tgt_len if tgt_len is not None else src_len

    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)

    inverted_mask = 1.0 - expanded_mask

    return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)


def apply_rotary_embedding(q, k, cos, sin, decode=False, rotary_index=None):  
    # q:  (bs, q_len, num_heads, head_dim)
    # k:  (bs, q_len [+past_kv_len], num_heads, head_dim)
    # cos: (max_seq_len, head_dim)
    # sin: (max_seq_len, head_dim)
    # rotary_index: (bs, 1)  # only used during decoding, when one query token is input at a time
    """Helper function to apply Rotary Embeddings."""
    cos = cos.to(q.dtype)
    sin = sin.to(q.dtype)

    if len(k.shape) == 3: # for multi query attention
        k = k.unsqueeze(2)
        multiquery = True
    else:
        multiquery = False

    batch, qlen, qheads, d = q.shape
    kbatch, klen, kheads, kd = k.shape
    assert batch == kbatch, f"{batch} != {kbatch}"
    assert d == kd, f"{d} != {kd}"
    if decode and qlen == 1 and rotary_index is not None:
        qcos = cos[rotary_index, :]  # (bs, 1, head_dim)
        qsin = sin[rotary_index, :]  # (bs, 1, head_dim)
        qcos = qcos.unsqueeze(2)  # (bs, q_len=1, 1, head_dim)  # broadcast to all heads
        qsin = qsin.unsqueeze(2)  # (bs, q_len=1, 1, head_dim)    
    else:
        qcos, qsin = cos[:qlen, :], sin[:qlen, :]  # (q_len, head_dim)
        qcos = qcos.unsqueeze(0).unsqueeze(2)  # (1, q_len, 1, head_dim)
        qsin = qsin.unsqueeze(0).unsqueeze(2)
    
    kcos, ksin = cos[:klen, :], sin[:klen, :]  # (k_len, head_dim)
    kcos = kcos.unsqueeze(0).unsqueeze(2)  # (1, k_len, 1, head_dim)  # broadcast to the whole batch, broadcast to all heads
    ksin = ksin.unsqueeze(0).unsqueeze(2)  # (1, k_len, 1, head_dim)
    out_q = (q * qcos) + (rotate_half(q) * qsin)
    out_k = (k * kcos) + (rotate_half(k) * ksin)

    if multiquery:
        out_k = out_k.squeeze(2)

    return out_q, out_k


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)

class LlamaRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        LlamaRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)

def SwiGLU(x):
    """Gated linear unit activation function.
    Args:
        x : input array
        axis: the axis along which the split should be computed (default: -1)
    """
    size = x.shape[-1]
    assert size % 2 == 0, "axis size must be divisible by 2"
    x1, x2 = torch.split(x, size // 2, -1)
    return x1 * (x2 * torch.sigmoid(x2))


class OpenMoeMLP(nn.Module):
    def __init__(self, config: LlamaConfig):
        super().__init__()
        self.pretraining_tp = config.pretraining_tp
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.hidden_act = config.hidden_act
        self.act_fn = get_activation(self.hidden_act)
        self.use_kernel = config.enable_kernel

    def forward(self, x):
        if self.pretraining_tp > 1:
            slice = self.intermediate_size // self.pretraining_tp
            gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
            up_proj_slices = self.up_proj.weight.split(slice, dim=0)
            down_proj_slices = self.down_proj.weight.split(slice, dim=1)

            gate_proj = torch.cat([F.linear(x, gate_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)
            up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)

            intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
            down_proj = [F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.pretraining_tp)]
            down_proj = sum(down_proj)
        else:
            if HAS_TRITON and self.use_kernel and self.hidden_act == "swiglu":
                down_proj = self.down_proj(LlamaActCombine.apply(self.gate_proj(x), self.up_proj(x)))
            else:
                down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))

        return down_proj


def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


class OpenMoeAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config: LlamaConfig):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = config.head_dim
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.pretraining_tp = config.pretraining_tp
        self.max_position_embeddings = config.max_position_embeddings

        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
        self.generate_fixed_pos_embedding(self.head_dim, self.max_position_embeddings, 1.0, 1e4)
        self.use_kernel = config.enable_kernel
        

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def generate_fixed_pos_embedding(self, features, length, min_timescale=1.0, max_timescale=10000.0):
        """Generate Sin/Cos for Rotary Embeddings.
    
        Args:
          features: an integer
          length: an integer
          min_timescale: an optional float
          max_timescale: an optional float
    
        Returns:
          output_sin: a float32 Tensor with shape [length, features]
          output_cos: a float32 Tensor with shape [length, features]
        """
        fraction = torch.arange(0, features, 2, dtype=torch.float32) / features
        timescale = min_timescale * (max_timescale / min_timescale) ** fraction
        rotational_frequency = 1.0 / timescale
    
        sinusoid_inp = torch.einsum("i,j->ij", torch.arange(length, dtype=torch.float32), rotational_frequency)
    
        sinusoid_inp = torch.cat([sinusoid_inp, sinusoid_inp], dim=-1)

        self.register_buffer('sin', torch.sin(sinusoid_inp), persistent=False)  # persistent=False --> buffer won't appear in the state_dict
        self.register_buffer('cos', torch.cos(sinusoid_inp), persistent=False)
    
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        bsz, q_len, _ = hidden_states.size()

        if self.pretraining_tp > 1:
            key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.pretraining_tp
            query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim) // self.pretraining_tp, dim=0)
            key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
            value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)

            query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp)]
            query_states = torch.cat(query_states, dim=-1)

            key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp)]
            key_states = torch.cat(key_states, dim=-1)

            value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp)]
            value_states = torch.cat(value_states, dim=-1)

        else:
            query_states = self.q_proj(hidden_states)
            key_states = self.k_proj(hidden_states)
            value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            kv_seq_len += past_key_value[0].shape[-2]
        # cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
        # query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
        if past_key_value is not None:
            # reuse k, v, self_attention
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)

        past_key_value = (key_states, value_states) if use_cache else None

        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        max_length = max(query_states.shape[1], key_states.shape[1])
        assert max_length <= self.sin.shape[0]
        sin, cos = self.sin[:max_length], self.cos[:max_length]
        # TODO: for inference, we can add emb kv into cache to avoid computation
        query_states, key_states = apply_rotary_embedding(
            query_states, key_states, cos, sin, decode=True if q_len == 1 else False, rotary_index=position_ids
        )
        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)

        # repeat k/v heads if n_kv_heads < n_heads
        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        if HAS_FLASH_ATTN and self.use_kernel:
            from flash_attn import flash_attn_func  

            query_states = query_states.transpose(1, 2)
            key_states = key_states.transpose(1, 2)
            value_states = value_states.transpose(1, 2)
            attn_output = flash_attn_func(query_states, key_states, value_states, softmax_scale=1.0, causal=True)
            attn_output = attn_output.transpose(1, 2).contiguous()
        else:
            attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))

            if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
                raise ValueError(
                    f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
                    f" {attn_weights.size()}"
                )

            if attention_mask is not None:
                if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
                    raise ValueError(
                        f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
                    )
                if self.training:
                    attention_mask = attention_mask.clone().detach()
                attention_mask[:, :, :, 0] = 0
                attn_weights = attn_weights + attention_mask

            # upcast attention to fp32
            attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
            attn_output = torch.matmul(attn_weights, value_states)

        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)

        if self.pretraining_tp > 1:
            attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
            o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.pretraining_tp, dim=1)
            attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.pretraining_tp)])
        else:
            attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value


class OpenMoeDecoderLayer(nn.Module):
    def __init__(self, config: LlamaConfig, moe: bool):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.moe = moe
        self.self_attn = OpenMoeAttention(config=config)  
#         self.self_attn = LlamaAttention(config=config)  # TODO: introduce LLaMA Positional Encoding
        self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        if self.moe:
            self.mlp = SparseMLP(
                num_experts=config.num_experts,
                hidden_size=config.hidden_size,
                intermediate_size=config.intermediate_size,
                router_top_k=config.router_topk,
                router_capacity_factor_train=config.router_capacity_factor_train,
                router_capacity_factor_eval=config.router_capacity_factor_eval,
                router_min_capacity=config.router_min_capacity,
                router_noisy_policy=config.router_noisy_policy,
                router_drop_tks=config.router_drop_tks,
                mlp_activation=config.hidden_act,
                mlp_gated=config.mlp_gated,
                enable_load_balance=config.enable_load_balance,
                load_balance_tolerance=config.load_balance_tolerance,
                load_balance_beam_width=config.load_balance_beam_width,
                load_balance_group_swap_factor=config.load_balance_group_swap_factor,
                enable_kernel=config.enable_kernel,
                enable_comm_overlap=config.enable_comm_overlap,
            )
            self.pre_extra_mlp_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
            self.extra_mlp = OpenMoeMLP(config)
        else:
            self.mlp = OpenMoeMLP(config)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
        """

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        if self.moe:
            residual = hidden_states
            hidden_states = self.pre_extra_mlp_layernorm(hidden_states)
            hidden_states = self.extra_mlp(hidden_states)
            hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


LLAMA_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`LlamaConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


@add_start_docstrings(
    "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
    LLAMA_START_DOCSTRING,
)
class OpenMoePreTrainedModel(PreTrainedModel):
    config_class = LlamaConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["OpenMoeDecoderLayer"]
    _skip_keys_device_placement = "past_key_values"

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, OpenMoeModel):
            module.gradient_checkpointing = value


LLAMA_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).

            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
            information on the default strategy.

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`.

            [What are position IDs?](../glossary#position-ids)
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
    LLAMA_START_DOCSTRING,
)
class OpenMoeModel(OpenMoePreTrainedModel):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]

    Args:
        config: LlamaConfig
    """

    def __init__(self, config: LlamaConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [
                OpenMoeDecoderLayer(config, moe=True if (i + 1) % config.moe_layer_interval == 0 else False)
                for i in range(config.num_hidden_layers)
            ]
        )
        self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
    def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
        # create causal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        combined_attention_mask = None
        if input_shape[-1] > 1:
            combined_attention_mask = _make_causal_mask(
                input_shape,
                inputs_embeds.dtype,
                device=inputs_embeds.device,
                past_key_values_length=past_key_values_length,
            )

        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
                inputs_embeds.device
            )
            combined_attention_mask = (
                expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
            )

        return combined_attention_mask

    @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

        seq_length_with_past = seq_length
        past_key_values_length = 0

        if past_key_values is not None:
            past_key_values_length = past_key_values[0][0].shape[2]
            seq_length_with_past = seq_length_with_past + past_key_values_length

        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(
                past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
            )
            position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
        else:
            position_ids = position_ids.view(-1, seq_length).long()

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)
        # embed positions
        if attention_mask is None:
            attention_mask = torch.ones(
                (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
            )
        attention_mask = self._prepare_decoder_attention_mask(
            attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
        )

        hidden_states = inputs_embeds

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = () if use_cache else None

        for idx, decoder_layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            past_key_value = past_key_values[idx] if past_key_values is not None else None

            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, output_attentions, None)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(decoder_layer),
                    hidden_states,
                    attention_mask,
                    position_ids,
                    None,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )


class OpenMoeForCausalLM(OpenMoePreTrainedModel):
    # _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.model = OpenMoeModel(config)
        self.pretraining_tp = config.pretraining_tp
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        chunk_head: Optional[bool] = True,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, LlamaForCausalLM

        >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
        >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```"""
        # reset moe loss
        MOE_MANAGER.reset_loss()

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        if self.pretraining_tp > 1:
            lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.pretraining_tp, dim=0)
            logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.pretraining_tp)]
            logits = torch.cat(logits, dim=-1)

        loss = None
        # if no training, just do forward
        if labels is None:
            logits = self.lm_head(hidden_states)
            logits = logits.float()
        # the vocab size for openmoe is 30w+
        # which causes great activation memory in training, up to 20G for one sequence
        # so we use chunk and checkpoint to reduce memory
        else:
            if chunk_head == True:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        logits = module(inputs[0])
                        logits = logits.float()
                        # Shift so that tokens < n predict n
                        shift_logits = logits[..., :-1, :].contiguous().float()
                        shift_labels = inputs[1][..., 1:].contiguous()
                        # Flatten the tokens
                        loss = self._calculate_loss(shift_logits, shift_labels)
                        return loss

                    return custom_forward

                aux_loss, z_loss = self._calculate_router_loss()
                loss = aux_loss + z_loss
                for batch_idx in range(hidden_states.shape[0]):
                    loss = loss + torch.utils.checkpoint.checkpoint(
                        create_custom_forward(self.lm_head),
                        hidden_states[batch_idx : batch_idx + 1, :],
                        labels[batch_idx : batch_idx + 1, :],
                    )
                logits = None
            else:
                logits = self.lm_head(hidden_states)
                logits = logits.float()
                # Shift so that tokens < n predict n
                shift_logits = logits[..., :-1, :].contiguous()
                shift_labels = labels[..., 1:].contiguous()
                # Flatten the tokens
                aux_loss, z_loss = self._calculate_router_loss()
                loss = aux_loss + z_loss
                loss = loss + self._calculate_loss(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
    ):
        if past_key_values:
            input_ids = input_ids[:, -1:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -1].unsqueeze(-1)

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
            }
        )
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
            )
        return reordered_past

    def _calculate_router_loss(self, aux_loss: list = None, z_loss: list = None):
        if aux_loss is None or z_loss is None:
            aux_loss, z_loss = MOE_MANAGER.get_loss()
        assert len(aux_loss) == len(z_loss) == self.config.num_hidden_layers // self.config.moe_layer_interval
        aux_loss = self.config.router_aux_loss_factor * sum(aux_loss) / len(aux_loss)
        z_loss = self.config.router_z_loss_factor * sum(z_loss) / len(z_loss)
        return aux_loss, z_loss

    def _calculate_loss(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
        """Compute cross entropy and entropy for log probs and targets.

        Args:
            logits: [batch, length, num_classes] float array.
            targets: categorical targets [batch, length] int array.

        Returns:
            Tuple of scalar loss.
        """
        if len(logits.shape) != len(targets.shape) + 1:
            raise ValueError(
                "Incorrect shapes. Got shape %s logits and %s targets" % (str(logits.shape), str(targets.shape))
            )
        vocab_size = logits.shape[-1]
        confidence = 1.0 - self.config.label_smoothing
        low_confidence = (1.0 - confidence) / (vocab_size - 1)
        normalizing_constant = -(
            confidence * math.log(confidence) + (vocab_size - 1) * low_confidence * math.log(low_confidence + 1e-20)
        )

        # one hot
        soft_targets = targets[..., None] == torch.arange(vocab_size, device=targets.device).reshape(
            (1,) * len(targets.shape) + (-1,)
        )
        soft_targets = torch.where(
            soft_targets, torch.full_like(soft_targets, confidence), torch.full_like(soft_targets, low_confidence)
        )
        soft_targets = soft_targets.to(torch.float32)

        # cross entropy
        total_loss = ZLossCrossEntropy.apply(logits, soft_targets, self.config.z_loss_factor)
        total_loss = total_loss - normalizing_constant
        total_loss = torch.mean(torch.sum(total_loss, dim=-1), dim=0)
        return total_loss


class ZLossCrossEntropy(torch.autograd.Function):
    """Computes cross entropy loss with stable custom gradient.

    Computes a stabilized-gradient version of:
        -jnp.sum(targets * nn.log_softmax(logits), axis=-1)

    If z_loss > 0, then an auxiliary loss equal to z_loss*log(z)^2
    will be added to the cross entropy loss (z = softmax normalization constant).
    The two uses of z_loss are:
    1. To keep the logits from drifting too far from zero, which can cause
        unacceptable roundoff errors in bfloat16.
    2. To encourage the logits to be normalized log-probabilities.

    Args:
        logits: [batch, length, num_classes] float array.
        targets: categorical one-hot targets [batch, length, num_classes] float
        array.
        z_loss: coefficient for auxilliary z-loss loss term.

    Returns:
        tuple with the total loss and the z_loss, both
        float arrays with shape [batch, length].
    """

    @staticmethod
    def forward(ctx, logits, targets, z_loss):
        max_logit = torch.max(logits, dim=-1, keepdim=True)[0]
        shifted = logits - max_logit
        exp_shifted = torch.exp(shifted)
        sum_exp = torch.sum(exp_shifted, axis=-1, keepdims=True)
        sum_exp_log = torch.log(sum_exp)
        log_softmax = shifted - sum_exp_log
        loss = -torch.sum(targets * log_softmax, axis=-1)
        # Add auxilliary z-loss term.
        log_z = torch.squeeze(sum_exp_log + max_logit, axis=-1)
        total_z_loss = z_loss * torch.square(log_z)
        loss += total_z_loss
        ctx.z_loss = z_loss
        ctx.save_for_backward(logits, targets, exp_shifted, sum_exp, log_softmax, log_z)
        return loss

    @staticmethod
    def backward(ctx, *grad_outputs):
        assert len(grad_outputs) == 1
        g = grad_outputs[0]
        z_loss = ctx.z_loss
        logits, targets, exp_shifted, sum_exp, log_softmax, log_z = ctx.saved_tensors
        # z-loss term adds the (2 * z_loss * log_z) factor.
        deriv = (1 + 2 * z_loss * log_z).unsqueeze(-1) * exp_shifted / sum_exp - targets
        g_logits = g.unsqueeze(-1) * deriv
        g_targets = -g.unsqueeze(-1) * log_softmax

        return (
            g_logits.to(logits.dtype),
            g_targets.to(targets.dtype),
            None,
        )