openmoe-base / modeling_openmoe.py
OrionZheng's picture
Update modeling_openmoe.py
ab59aaf
raw
history blame
51 kB
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch OpenMoE model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.models.llama.modeling_llama import LlamaConfig, LlamaRMSNorm
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from colossalai.kernel.cuda_native.mha.flash_attn_2 import HAS_FLASH_ATTN
from colossalai.kernel.triton.llama_act_combine_kernel import HAS_TRITON
from colossalai.moe.layers import SparseMLP
from colossalai.moe.manager import MOE_MANAGER
from colossalai.moe.utils import get_activation, set_moe_args
if HAS_TRITON:
from colossalai.kernel.triton.llama_act_combine_kernel import LlamaActCombine
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "LlamaConfig"
class LlamaRotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
freqs = torch.outer(t, self.inv_freq) # (seq_len, dim//2)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1) # (seq_len, dim)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len].to(dtype=x.dtype),
self.sin_cached[:seq_len].to(dtype=x.dtype),
)
def set_openmoe_args(
config: LlamaConfig,
num_experts: int,
moe_layer_interval: int,
router_topk: int = 2,
router_capacity_factor_train: float = 1.25,
router_capacity_factor_eval: float = 2.0,
router_min_capacity: int = 4,
router_noisy_policy: str = None,
router_drop_tks: bool = True,
router_aux_loss_factor: float = 0.01,
router_z_loss_factor: float = 0.0001,
mlp_gated: bool = True,
label_smoothing: float = 0.001,
z_loss_factor: float = 0.01,
enable_load_balance: bool = False,
load_balance_tolerance: float = 0.1,
load_balance_beam_width: int = 8,
load_balance_group_swap_factor: float = 0.4,
enable_kernel: bool = False,
enable_comm_overlap: bool = False,
enable_hierarchical_alltoall: bool = False,
) -> None:
"""
MoE related arguments.
It inserts the MoE arguments into the Llama config.
Args:
config (LlamaConfig): Transformers Llama config.
num_experts (int, optional): Number of experts.
moe_layer_interval (int, optional): The interval moe layer.
router_topk (int, optional): Moe router top k. Defaults to 2.
router_capacity_factor_train (float, optional): Moe router max capacity for train. Defaults to 1.25.
router_capacity_factor_eval (float, optional): Moe router max capacity for eval. Defaults to 2.0.
router_min_capacity (int, optional): Moe router min capacity. Defaults to 4.
router_noisy_policy (str, optional): Moe router noisy policy. You can choose [Jitter, Gaussian, None]. Defaults to None.
router_drop_tks (bool, optional): Whether moe router drop tokens which exceed max capacity. Defaults to True.
router_aux_loss_factor (float, optional): Moe router aux loss. You can refer to STMoE for details. Defaults to 0.01.
router_z_loss_factor (float, optional): Moe router z loss. You can refer to STMoE for details. Defaults to 0.01.
mlp_gated (bool, optional): Use gate in mlp. Defaults to True.
label_smoothing (float, optional): Label smoothing. Defaults to 0.001.
z_loss_factor (float, optional): The final outputs' classification z loss factor. Defaults to 0.01.
enable_load_balance (bool, optional): Expert load balance. Defaults to False.
load_balance_tolerance (float, optional): Expert load balance search's difference tolerance. Defaults to 0.1.
load_balance_beam_width (int, optional): Expert load balance search's beam width. Defaults to 8.
load_balance_group_swap_factor (float, optional): Expert load balance group swap factor. Longer value encourages less swap. Defaults to 0.4.
enable_kernel (bool, optional): Use kernel optimization. Defaults to False.
enable_comm_overlap (bool, optional): Use communication overlap for MoE. Recommended to enable for muiti-node training. Defaults to False.
enable_hierarchical_alltoall (bool, optional): Use hierarchical alltoall for MoE. Defaults to False.
"""
moe_args = dict(
num_experts=num_experts,
moe_layer_interval=moe_layer_interval,
router_topk=router_topk,
router_capacity_factor_train=router_capacity_factor_train,
router_capacity_factor_eval=router_capacity_factor_eval,
router_min_capacity=router_min_capacity,
router_noisy_policy=router_noisy_policy,
router_drop_tks=router_drop_tks,
router_aux_loss_factor=router_aux_loss_factor,
router_z_loss_factor=router_z_loss_factor,
mlp_gated=mlp_gated,
label_smoothing=label_smoothing,
z_loss_factor=z_loss_factor,
enable_load_balance=enable_load_balance,
load_balance_tolerance=load_balance_tolerance,
load_balance_beam_width=load_balance_beam_width,
load_balance_group_swap_factor=load_balance_group_swap_factor,
enable_kernel=enable_kernel,
enable_comm_overlap=enable_comm_overlap,
enable_hierarchical_alltoall=enable_hierarchical_alltoall,
)
set_moe_args(config, moe_args)
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
mask_cond = torch.arange(mask.size(-1), device=device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`):
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
used to pass offsetted position ids when working with a KV-cache.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def SwiGLU(x):
"""Gated linear unit activation function.
Args:
x : input array
axis: the axis along which the split should be computed (default: -1)
"""
size = x.shape[-1]
assert size % 2 == 0, "axis size must be divisible by 2"
x1, x2 = torch.split(x, size // 2, -1)
return x1 * (x2 * torch.sigmoid(x2))
class OpenMoeMLP(nn.Module):
def __init__(self, config: LlamaConfig):
super().__init__()
self.pretraining_tp = config.pretraining_tp
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.hidden_act = config.hidden_act
self.act_fn = get_activation(self.hidden_act)
self.use_kernel = config.enable_kernel
def forward(self, x):
if self.pretraining_tp > 1:
slice = self.intermediate_size // self.pretraining_tp
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
gate_proj = torch.cat([F.linear(x, gate_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
down_proj = [F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.pretraining_tp)]
down_proj = sum(down_proj)
else:
if HAS_TRITON and self.use_kernel and self.hidden_act == "swiglu":
down_proj = self.down_proj(LlamaActCombine.apply(self.gate_proj(x), self.up_proj(x)))
else:
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class OpenMoeAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: LlamaConfig):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = config.head_dim
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.pretraining_tp = config.pretraining_tp
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self._init_rope()
def _init_rope(self):
if self.config.rope_scaling is None:
self.rotary_emb = LlamaRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.rope_theta,
)
else:
raise ValueError(f"Only Original RotaryEmbedding is supported yet")
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
use_kernel: bool = True,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
if self.pretraining_tp > 1:
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.pretraining_tp
query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim) // self.pretraining_tp, dim=0)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) # (bsz, num_heads, q_len, head_dim)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) # (bsz, num_heads, q_len, head_dim)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) # (bsz, num_heads, q_len, head_dim)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2) # (bsz, num_heads, q_len+past_kv_len, head_dim)
value_states = torch.cat([past_key_value[1], value_states], dim=2) # (bsz, num_heads, q_len+past_kv_len, head_dim)
past_key_value = (key_states, value_states) if use_cache else None
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
if HAS_FLASH_ATTN and use_kernel:
exec("from flash_attn import flash_attn_func")
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
attn_output = flash_attn_func(query_states, key_states, value_states, softmax_scale=1.0, causal=True)
attn_output = attn_output.transpose(1, 2).contiguous()
else:
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
if self.training:
attention_mask = attention_mask.clone().detach()
attention_mask[:, :, :, 0] = 0
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
if self.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.pretraining_tp, dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class OpenMoeDecoderLayer(nn.Module):
def __init__(self, config: LlamaConfig, moe: bool):
super().__init__()
self.hidden_size = config.hidden_size
self.moe = moe
self.self_attn = OpenMoeAttention(config=config)
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
if self.moe:
self.mlp = SparseMLP(
num_experts=config.num_experts,
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
router_top_k=config.router_topk,
router_capacity_factor_train=config.router_capacity_factor_train,
router_capacity_factor_eval=config.router_capacity_factor_eval,
router_min_capacity=config.router_min_capacity,
router_noisy_policy=config.router_noisy_policy,
router_drop_tks=config.router_drop_tks,
mlp_activation=config.hidden_act,
mlp_gated=config.mlp_gated,
enable_load_balance=config.enable_load_balance,
load_balance_tolerance=config.load_balance_tolerance,
load_balance_beam_width=config.load_balance_beam_width,
load_balance_group_swap_factor=config.load_balance_group_swap_factor,
enable_kernel=config.enable_kernel,
enable_comm_overlap=config.enable_comm_overlap,
)
self.pre_extra_mlp_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.extra_mlp = OpenMoeMLP(config)
else:
self.mlp = OpenMoeMLP(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
if self.moe:
residual = hidden_states
hidden_states = self.pre_extra_mlp_layernorm(hidden_states)
hidden_states = self.extra_mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
LLAMA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`LlamaConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
LLAMA_START_DOCSTRING,
)
class OpenMoePreTrainedModel(PreTrainedModel):
config_class = LlamaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["LlamaDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, OpenMoeModel):
module.gradient_checkpointing = value
LLAMA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
LLAMA_START_DOCSTRING,
)
class OpenMoeModel(OpenMoePreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
Args:
config: LlamaConfig
"""
def __init__(self, config: LlamaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[
OpenMoeDecoderLayer(config, moe=True if (i + 1) % config.moe_layer_interval == 0 else False)
for i in range(config.num_hidden_layers)
]
)
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
inputs_embeds.dtype,
device=inputs_embeds.device,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
inputs_embeds.device
)
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# embed positions
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, None)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
position_ids,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class OpenMoeForCausalLM(OpenMoePreTrainedModel):
# _tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = OpenMoeModel(config)
self.pretraining_tp = config.pretraining_tp
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
chunk_head: Optional[bool] = True,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, LlamaForCausalLM
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
# reset moe loss
MOE_MANAGER.reset_loss()
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.pretraining_tp > 1:
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.pretraining_tp, dim=0)
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.pretraining_tp)]
logits = torch.cat(logits, dim=-1)
loss = None
# if no training, just do forward
if labels is None:
logits = self.lm_head(hidden_states)
logits = logits.float()
# the vocab size for openmoe is 30w+
# which causes great activation memory in training, up to 20G for one sequence
# so we use chunk and checkpoint to reduce memory
else:
if chunk_head == True:
def create_custom_forward(module):
def custom_forward(*inputs):
logits = module(inputs[0])
logits = logits.float()
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous().float()
shift_labels = inputs[1][..., 1:].contiguous()
# Flatten the tokens
loss = self._calculate_loss(shift_logits, shift_labels)
return loss
return custom_forward
aux_loss, z_loss = self._calculate_router_loss()
loss = aux_loss + z_loss
for batch_idx in range(hidden_states.shape[0]):
loss = loss + torch.utils.checkpoint.checkpoint(
create_custom_forward(self.lm_head),
hidden_states[batch_idx : batch_idx + 1, :],
labels[batch_idx : batch_idx + 1, :],
)
logits = None
else:
logits = self.lm_head(hidden_states)
logits = logits.float()
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
aux_loss, z_loss = self._calculate_router_loss()
loss = aux_loss + z_loss
loss = loss + self._calculate_loss(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
if past_key_values:
input_ids = input_ids[:, -1:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
def _calculate_router_loss(self, aux_loss: list = None, z_loss: list = None):
if aux_loss is None or z_loss is None:
aux_loss, z_loss = MOE_MANAGER.get_loss()
assert len(aux_loss) == len(z_loss) == self.config.num_hidden_layers // self.config.moe_layer_interval
aux_loss = self.config.router_aux_loss_factor * sum(aux_loss) / len(aux_loss)
z_loss = self.config.router_z_loss_factor * sum(z_loss) / len(z_loss)
return aux_loss, z_loss
def _calculate_loss(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
"""Compute cross entropy and entropy for log probs and targets.
Args:
logits: [batch, length, num_classes] float array.
targets: categorical targets [batch, length] int array.
Returns:
Tuple of scalar loss.
"""
if len(logits.shape) != len(targets.shape) + 1:
raise ValueError(
"Incorrect shapes. Got shape %s logits and %s targets" % (str(logits.shape), str(targets.shape))
)
vocab_size = logits.shape[-1]
confidence = 1.0 - self.config.label_smoothing
low_confidence = (1.0 - confidence) / (vocab_size - 1)
normalizing_constant = -(
confidence * math.log(confidence) + (vocab_size - 1) * low_confidence * math.log(low_confidence + 1e-20)
)
# one hot
soft_targets = targets[..., None] == torch.arange(vocab_size, device=targets.device).reshape(
(1,) * len(targets.shape) + (-1,)
)
soft_targets = torch.where(
soft_targets, torch.full_like(soft_targets, confidence), torch.full_like(soft_targets, low_confidence)
)
soft_targets = soft_targets.to(torch.float32)
# cross entropy
total_loss = ZLossCrossEntropy.apply(logits, soft_targets, self.config.z_loss_factor)
total_loss = total_loss - normalizing_constant
total_loss = torch.mean(torch.sum(total_loss, dim=-1), dim=0)
return total_loss
class ZLossCrossEntropy(torch.autograd.Function):
"""Computes cross entropy loss with stable custom gradient.
Computes a stabilized-gradient version of:
-jnp.sum(targets * nn.log_softmax(logits), axis=-1)
If z_loss > 0, then an auxiliary loss equal to z_loss*log(z)^2
will be added to the cross entropy loss (z = softmax normalization constant).
The two uses of z_loss are:
1. To keep the logits from drifting too far from zero, which can cause
unacceptable roundoff errors in bfloat16.
2. To encourage the logits to be normalized log-probabilities.
Args:
logits: [batch, length, num_classes] float array.
targets: categorical one-hot targets [batch, length, num_classes] float
array.
z_loss: coefficient for auxilliary z-loss loss term.
Returns:
tuple with the total loss and the z_loss, both
float arrays with shape [batch, length].
"""
@staticmethod
def forward(ctx, logits, targets, z_loss):
max_logit = torch.max(logits, dim=-1, keepdim=True)[0]
shifted = logits - max_logit
exp_shifted = torch.exp(shifted)
sum_exp = torch.sum(exp_shifted, axis=-1, keepdims=True)
sum_exp_log = torch.log(sum_exp)
log_softmax = shifted - sum_exp_log
loss = -torch.sum(targets * log_softmax, axis=-1)
# Add auxilliary z-loss term.
log_z = torch.squeeze(sum_exp_log + max_logit, axis=-1)
total_z_loss = z_loss * torch.square(log_z)
loss += total_z_loss
ctx.z_loss = z_loss
ctx.save_for_backward(logits, targets, exp_shifted, sum_exp, log_softmax, log_z)
return loss
@staticmethod
def backward(ctx, *grad_outputs):
assert len(grad_outputs) == 1
g = grad_outputs[0]
z_loss = ctx.z_loss
logits, targets, exp_shifted, sum_exp, log_softmax, log_z = ctx.saved_tensors
# z-loss term adds the (2 * z_loss * log_z) factor.
deriv = (1 + 2 * z_loss * log_z).unsqueeze(-1) * exp_shifted / sum_exp - targets
g_logits = g.unsqueeze(-1) * deriv
g_targets = -g.unsqueeze(-1) * log_softmax
return (
g_logits.to(logits.dtype),
g_targets.to(targets.dtype),
None,
)