|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch OpenMoE model.""" |
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.models.llama.modeling_llama import LlamaConfig, LlamaRMSNorm |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
|
|
from colossalai.kernel.cuda_native.mha.flash_attn_2 import HAS_FLASH_ATTN |
|
from colossalai.kernel.triton.llama_act_combine_kernel import HAS_TRITON |
|
from colossalai.moe.layers import SparseMLP |
|
from colossalai.moe.manager import MOE_MANAGER |
|
from colossalai.moe.utils import get_activation, set_moe_args |
|
|
|
if HAS_TRITON: |
|
from colossalai.kernel.triton.llama_act_combine_kernel import LlamaActCombine |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "LlamaConfig" |
|
|
|
class LlamaRotaryEmbedding(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.outer(t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:seq_len].to(dtype=x.dtype), |
|
self.sin_cached[:seq_len].to(dtype=x.dtype), |
|
) |
|
|
|
def set_openmoe_args( |
|
config: LlamaConfig, |
|
num_experts: int, |
|
moe_layer_interval: int, |
|
router_topk: int = 2, |
|
router_capacity_factor_train: float = 1.25, |
|
router_capacity_factor_eval: float = 2.0, |
|
router_min_capacity: int = 4, |
|
router_noisy_policy: str = None, |
|
router_drop_tks: bool = True, |
|
router_aux_loss_factor: float = 0.01, |
|
router_z_loss_factor: float = 0.0001, |
|
mlp_gated: bool = True, |
|
label_smoothing: float = 0.001, |
|
z_loss_factor: float = 0.01, |
|
enable_load_balance: bool = False, |
|
load_balance_tolerance: float = 0.1, |
|
load_balance_beam_width: int = 8, |
|
load_balance_group_swap_factor: float = 0.4, |
|
enable_kernel: bool = False, |
|
enable_comm_overlap: bool = False, |
|
enable_hierarchical_alltoall: bool = False, |
|
) -> None: |
|
""" |
|
MoE related arguments. |
|
It inserts the MoE arguments into the Llama config. |
|
|
|
Args: |
|
config (LlamaConfig): Transformers Llama config. |
|
num_experts (int, optional): Number of experts. |
|
moe_layer_interval (int, optional): The interval moe layer. |
|
router_topk (int, optional): Moe router top k. Defaults to 2. |
|
router_capacity_factor_train (float, optional): Moe router max capacity for train. Defaults to 1.25. |
|
router_capacity_factor_eval (float, optional): Moe router max capacity for eval. Defaults to 2.0. |
|
router_min_capacity (int, optional): Moe router min capacity. Defaults to 4. |
|
router_noisy_policy (str, optional): Moe router noisy policy. You can choose [Jitter, Gaussian, None]. Defaults to None. |
|
router_drop_tks (bool, optional): Whether moe router drop tokens which exceed max capacity. Defaults to True. |
|
router_aux_loss_factor (float, optional): Moe router aux loss. You can refer to STMoE for details. Defaults to 0.01. |
|
router_z_loss_factor (float, optional): Moe router z loss. You can refer to STMoE for details. Defaults to 0.01. |
|
mlp_gated (bool, optional): Use gate in mlp. Defaults to True. |
|
label_smoothing (float, optional): Label smoothing. Defaults to 0.001. |
|
z_loss_factor (float, optional): The final outputs' classification z loss factor. Defaults to 0.01. |
|
enable_load_balance (bool, optional): Expert load balance. Defaults to False. |
|
load_balance_tolerance (float, optional): Expert load balance search's difference tolerance. Defaults to 0.1. |
|
load_balance_beam_width (int, optional): Expert load balance search's beam width. Defaults to 8. |
|
load_balance_group_swap_factor (float, optional): Expert load balance group swap factor. Longer value encourages less swap. Defaults to 0.4. |
|
enable_kernel (bool, optional): Use kernel optimization. Defaults to False. |
|
enable_comm_overlap (bool, optional): Use communication overlap for MoE. Recommended to enable for muiti-node training. Defaults to False. |
|
enable_hierarchical_alltoall (bool, optional): Use hierarchical alltoall for MoE. Defaults to False. |
|
""" |
|
moe_args = dict( |
|
num_experts=num_experts, |
|
moe_layer_interval=moe_layer_interval, |
|
router_topk=router_topk, |
|
router_capacity_factor_train=router_capacity_factor_train, |
|
router_capacity_factor_eval=router_capacity_factor_eval, |
|
router_min_capacity=router_min_capacity, |
|
router_noisy_policy=router_noisy_policy, |
|
router_drop_tks=router_drop_tks, |
|
router_aux_loss_factor=router_aux_loss_factor, |
|
router_z_loss_factor=router_z_loss_factor, |
|
mlp_gated=mlp_gated, |
|
label_smoothing=label_smoothing, |
|
z_loss_factor=z_loss_factor, |
|
enable_load_balance=enable_load_balance, |
|
load_balance_tolerance=load_balance_tolerance, |
|
load_balance_beam_width=load_balance_beam_width, |
|
load_balance_group_swap_factor=load_balance_group_swap_factor, |
|
enable_kernel=enable_kernel, |
|
enable_comm_overlap=enable_comm_overlap, |
|
enable_hierarchical_alltoall=enable_hierarchical_alltoall, |
|
) |
|
set_moe_args(config, moe_args) |
|
|
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 |
|
): |
|
""" |
|
Make causal mask used for bi-directional self-attention. |
|
""" |
|
bsz, tgt_len = input_ids_shape |
|
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) |
|
mask_cond = torch.arange(mask.size(-1), device=device) |
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) |
|
mask = mask.to(dtype) |
|
|
|
if past_key_values_length > 0: |
|
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) |
|
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) |
|
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`): |
|
The position indices of the tokens corresponding to the query and key tensors. For example, this can be |
|
used to pass offsetted position ids when working with a KV-cache. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos[position_ids].unsqueeze(unsqueeze_dim) |
|
sin = sin[position_ids].unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
def SwiGLU(x): |
|
"""Gated linear unit activation function. |
|
Args: |
|
x : input array |
|
axis: the axis along which the split should be computed (default: -1) |
|
""" |
|
size = x.shape[-1] |
|
assert size % 2 == 0, "axis size must be divisible by 2" |
|
x1, x2 = torch.split(x, size // 2, -1) |
|
return x1 * (x2 * torch.sigmoid(x2)) |
|
|
|
|
|
class OpenMoeMLP(nn.Module): |
|
def __init__(self, config: LlamaConfig): |
|
super().__init__() |
|
self.pretraining_tp = config.pretraining_tp |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.hidden_act = config.hidden_act |
|
self.act_fn = get_activation(self.hidden_act) |
|
self.use_kernel = config.enable_kernel |
|
|
|
def forward(self, x): |
|
if self.pretraining_tp > 1: |
|
slice = self.intermediate_size // self.pretraining_tp |
|
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0) |
|
up_proj_slices = self.up_proj.weight.split(slice, dim=0) |
|
down_proj_slices = self.down_proj.weight.split(slice, dim=1) |
|
|
|
gate_proj = torch.cat([F.linear(x, gate_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1) |
|
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1) |
|
|
|
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2) |
|
down_proj = [F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.pretraining_tp)] |
|
down_proj = sum(down_proj) |
|
else: |
|
if HAS_TRITON and self.use_kernel and self.hidden_act == "swiglu": |
|
down_proj = self.down_proj(LlamaActCombine.apply(self.gate_proj(x), self.up_proj(x))) |
|
else: |
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
return down_proj |
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
class OpenMoeAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: LlamaConfig): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = config.head_dim |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.pretraining_tp = config.pretraining_tp |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.rope_theta = config.rope_theta |
|
|
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) |
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) |
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
self._init_rope() |
|
|
|
def _init_rope(self): |
|
if self.config.rope_scaling is None: |
|
self.rotary_emb = LlamaRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.rope_theta, |
|
) |
|
else: |
|
raise ValueError(f"Only Original RotaryEmbedding is supported yet") |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
use_kernel: bool = True, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
if self.pretraining_tp > 1: |
|
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.pretraining_tp |
|
query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim) // self.pretraining_tp, dim=0) |
|
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0) |
|
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0) |
|
|
|
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp)] |
|
query_states = torch.cat(query_states, dim=-1) |
|
|
|
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp)] |
|
key_states = torch.cat(key_states, dim=-1) |
|
|
|
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp)] |
|
value_states = torch.cat(value_states, dim=-1) |
|
|
|
else: |
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
if HAS_FLASH_ATTN and use_kernel: |
|
exec("from flash_attn import flash_attn_func") |
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
attn_output = flash_attn_func(query_states, key_states, value_states, softmax_scale=1.0, causal=True) |
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
else: |
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) |
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
if self.training: |
|
attention_mask = attention_mask.clone().detach() |
|
attention_mask[:, :, :, 0] = 0 |
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim) |
|
|
|
if self.pretraining_tp > 1: |
|
attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2) |
|
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.pretraining_tp, dim=1) |
|
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.pretraining_tp)]) |
|
else: |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class OpenMoeDecoderLayer(nn.Module): |
|
def __init__(self, config: LlamaConfig, moe: bool): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.moe = moe |
|
self.self_attn = OpenMoeAttention(config=config) |
|
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
if self.moe: |
|
self.mlp = SparseMLP( |
|
num_experts=config.num_experts, |
|
hidden_size=config.hidden_size, |
|
intermediate_size=config.intermediate_size, |
|
router_top_k=config.router_topk, |
|
router_capacity_factor_train=config.router_capacity_factor_train, |
|
router_capacity_factor_eval=config.router_capacity_factor_eval, |
|
router_min_capacity=config.router_min_capacity, |
|
router_noisy_policy=config.router_noisy_policy, |
|
router_drop_tks=config.router_drop_tks, |
|
mlp_activation=config.hidden_act, |
|
mlp_gated=config.mlp_gated, |
|
enable_load_balance=config.enable_load_balance, |
|
load_balance_tolerance=config.load_balance_tolerance, |
|
load_balance_beam_width=config.load_balance_beam_width, |
|
load_balance_group_swap_factor=config.load_balance_group_swap_factor, |
|
enable_kernel=config.enable_kernel, |
|
enable_comm_overlap=config.enable_comm_overlap, |
|
) |
|
self.pre_extra_mlp_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.extra_mlp = OpenMoeMLP(config) |
|
else: |
|
self.mlp = OpenMoeMLP(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
""" |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
if self.moe: |
|
residual = hidden_states |
|
hidden_states = self.pre_extra_mlp_layernorm(hidden_states) |
|
hidden_states = self.extra_mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
LLAMA_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`LlamaConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.", |
|
LLAMA_START_DOCSTRING, |
|
) |
|
class OpenMoePreTrainedModel(PreTrainedModel): |
|
config_class = LlamaConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["LlamaDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, OpenMoeModel): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
LLAMA_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.", |
|
LLAMA_START_DOCSTRING, |
|
) |
|
class OpenMoeModel(OpenMoePreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`] |
|
|
|
Args: |
|
config: LlamaConfig |
|
""" |
|
|
|
def __init__(self, config: LlamaConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList( |
|
[ |
|
OpenMoeDecoderLayer(config, moe=True if (i + 1) % config.moe_layer_interval == 0 else False) |
|
for i in range(config.num_hidden_layers) |
|
] |
|
) |
|
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
|
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): |
|
|
|
|
|
combined_attention_mask = None |
|
if input_shape[-1] > 1: |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, |
|
inputs_embeds.dtype, |
|
device=inputs_embeds.device, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( |
|
inputs_embeds.device |
|
) |
|
combined_attention_mask = ( |
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
|
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device |
|
) |
|
attention_mask = self._prepare_decoder_attention_mask( |
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = () if use_cache else None |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, output_attentions, None) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(decoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
None, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class OpenMoeForCausalLM(OpenMoePreTrainedModel): |
|
|
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = OpenMoeModel(config) |
|
self.pretraining_tp = config.pretraining_tp |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
chunk_head: Optional[bool] = True, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, LlamaForCausalLM |
|
|
|
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
```""" |
|
|
|
MOE_MANAGER.reset_loss() |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if self.pretraining_tp > 1: |
|
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.pretraining_tp, dim=0) |
|
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.pretraining_tp)] |
|
logits = torch.cat(logits, dim=-1) |
|
|
|
loss = None |
|
|
|
if labels is None: |
|
logits = self.lm_head(hidden_states) |
|
logits = logits.float() |
|
|
|
|
|
|
|
else: |
|
if chunk_head == True: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
logits = module(inputs[0]) |
|
logits = logits.float() |
|
|
|
shift_logits = logits[..., :-1, :].contiguous().float() |
|
shift_labels = inputs[1][..., 1:].contiguous() |
|
|
|
loss = self._calculate_loss(shift_logits, shift_labels) |
|
return loss |
|
|
|
return custom_forward |
|
|
|
aux_loss, z_loss = self._calculate_router_loss() |
|
loss = aux_loss + z_loss |
|
for batch_idx in range(hidden_states.shape[0]): |
|
loss = loss + torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.lm_head), |
|
hidden_states[batch_idx : batch_idx + 1, :], |
|
labels[batch_idx : batch_idx + 1, :], |
|
) |
|
logits = None |
|
else: |
|
logits = self.lm_head(hidden_states) |
|
logits = logits.float() |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
aux_loss, z_loss = self._calculate_router_loss() |
|
loss = aux_loss + z_loss |
|
loss = loss + self._calculate_loss(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
|
|
def _calculate_router_loss(self, aux_loss: list = None, z_loss: list = None): |
|
if aux_loss is None or z_loss is None: |
|
aux_loss, z_loss = MOE_MANAGER.get_loss() |
|
assert len(aux_loss) == len(z_loss) == self.config.num_hidden_layers // self.config.moe_layer_interval |
|
aux_loss = self.config.router_aux_loss_factor * sum(aux_loss) / len(aux_loss) |
|
z_loss = self.config.router_z_loss_factor * sum(z_loss) / len(z_loss) |
|
return aux_loss, z_loss |
|
|
|
def _calculate_loss(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: |
|
"""Compute cross entropy and entropy for log probs and targets. |
|
|
|
Args: |
|
logits: [batch, length, num_classes] float array. |
|
targets: categorical targets [batch, length] int array. |
|
|
|
Returns: |
|
Tuple of scalar loss. |
|
""" |
|
if len(logits.shape) != len(targets.shape) + 1: |
|
raise ValueError( |
|
"Incorrect shapes. Got shape %s logits and %s targets" % (str(logits.shape), str(targets.shape)) |
|
) |
|
vocab_size = logits.shape[-1] |
|
confidence = 1.0 - self.config.label_smoothing |
|
low_confidence = (1.0 - confidence) / (vocab_size - 1) |
|
normalizing_constant = -( |
|
confidence * math.log(confidence) + (vocab_size - 1) * low_confidence * math.log(low_confidence + 1e-20) |
|
) |
|
|
|
|
|
soft_targets = targets[..., None] == torch.arange(vocab_size, device=targets.device).reshape( |
|
(1,) * len(targets.shape) + (-1,) |
|
) |
|
soft_targets = torch.where( |
|
soft_targets, torch.full_like(soft_targets, confidence), torch.full_like(soft_targets, low_confidence) |
|
) |
|
soft_targets = soft_targets.to(torch.float32) |
|
|
|
|
|
total_loss = ZLossCrossEntropy.apply(logits, soft_targets, self.config.z_loss_factor) |
|
total_loss = total_loss - normalizing_constant |
|
total_loss = torch.mean(torch.sum(total_loss, dim=-1), dim=0) |
|
return total_loss |
|
|
|
|
|
class ZLossCrossEntropy(torch.autograd.Function): |
|
"""Computes cross entropy loss with stable custom gradient. |
|
|
|
Computes a stabilized-gradient version of: |
|
-jnp.sum(targets * nn.log_softmax(logits), axis=-1) |
|
|
|
If z_loss > 0, then an auxiliary loss equal to z_loss*log(z)^2 |
|
will be added to the cross entropy loss (z = softmax normalization constant). |
|
The two uses of z_loss are: |
|
1. To keep the logits from drifting too far from zero, which can cause |
|
unacceptable roundoff errors in bfloat16. |
|
2. To encourage the logits to be normalized log-probabilities. |
|
|
|
Args: |
|
logits: [batch, length, num_classes] float array. |
|
targets: categorical one-hot targets [batch, length, num_classes] float |
|
array. |
|
z_loss: coefficient for auxilliary z-loss loss term. |
|
|
|
Returns: |
|
tuple with the total loss and the z_loss, both |
|
float arrays with shape [batch, length]. |
|
""" |
|
|
|
@staticmethod |
|
def forward(ctx, logits, targets, z_loss): |
|
max_logit = torch.max(logits, dim=-1, keepdim=True)[0] |
|
shifted = logits - max_logit |
|
exp_shifted = torch.exp(shifted) |
|
sum_exp = torch.sum(exp_shifted, axis=-1, keepdims=True) |
|
sum_exp_log = torch.log(sum_exp) |
|
log_softmax = shifted - sum_exp_log |
|
loss = -torch.sum(targets * log_softmax, axis=-1) |
|
|
|
log_z = torch.squeeze(sum_exp_log + max_logit, axis=-1) |
|
total_z_loss = z_loss * torch.square(log_z) |
|
loss += total_z_loss |
|
ctx.z_loss = z_loss |
|
ctx.save_for_backward(logits, targets, exp_shifted, sum_exp, log_softmax, log_z) |
|
return loss |
|
|
|
@staticmethod |
|
def backward(ctx, *grad_outputs): |
|
assert len(grad_outputs) == 1 |
|
g = grad_outputs[0] |
|
z_loss = ctx.z_loss |
|
logits, targets, exp_shifted, sum_exp, log_softmax, log_z = ctx.saved_tensors |
|
|
|
deriv = (1 + 2 * z_loss * log_z).unsqueeze(-1) * exp_shifted / sum_exp - targets |
|
g_logits = g.unsqueeze(-1) * deriv |
|
g_targets = -g.unsqueeze(-1) * log_softmax |
|
|
|
return ( |
|
g_logits.to(logits.dtype), |
|
g_targets.to(targets.dtype), |
|
None, |
|
) |
|
|