OrionZheng commited on
Commit
e248dc3
1 Parent(s): df5b54b

Upload modeling_openmoe.py

Browse files
Files changed (1) hide show
  1. modeling_openmoe.py +1113 -0
modeling_openmoe.py ADDED
@@ -0,0 +1,1113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch OpenMoE model."""
21
+ import math
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.nn.functional as F
26
+ import torch.utils.checkpoint
27
+ from torch import nn
28
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
29
+ from transformers.modeling_utils import PreTrainedModel
30
+ from transformers.models.llama.modeling_llama import LlamaConfig, LlamaRMSNorm
31
+ from transformers.utils import (
32
+ add_start_docstrings,
33
+ add_start_docstrings_to_model_forward,
34
+ logging,
35
+ replace_return_docstrings,
36
+ )
37
+
38
+ from colossalai.kernel.cuda_native.mha.flash_attn_2 import HAS_FLASH_ATTN
39
+ from colossalai.kernel.triton.llama_act_combine_kernel import HAS_TRITON
40
+ from colossalai.moe.layers import SparseMLP
41
+ from colossalai.moe.manager import MOE_MANAGER
42
+ from colossalai.moe.utils import get_activation, set_moe_args
43
+
44
+ if HAS_TRITON:
45
+ from colossalai.kernel.triton.llama_act_combine_kernel import LlamaActCombine
46
+
47
+ logger = logging.get_logger(__name__)
48
+
49
+ _CONFIG_FOR_DOC = "LlamaConfig"
50
+
51
+ class LlamaRotaryEmbedding(nn.Module):
52
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
53
+ super().__init__()
54
+
55
+ self.dim = dim
56
+ self.max_position_embeddings = max_position_embeddings
57
+ self.base = base
58
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
59
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
60
+
61
+ # Build here to make `torch.jit.trace` work.
62
+ self._set_cos_sin_cache(
63
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
64
+ )
65
+
66
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
67
+ self.max_seq_len_cached = seq_len
68
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
69
+
70
+ freqs = torch.outer(t, self.inv_freq) # (seq_len, dim//2)
71
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
72
+ emb = torch.cat((freqs, freqs), dim=-1) # (seq_len, dim)
73
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
74
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
75
+
76
+ def forward(self, x, seq_len=None):
77
+ # x: [bs, num_attention_heads, seq_len, head_size]
78
+ if seq_len > self.max_seq_len_cached:
79
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
80
+
81
+ return (
82
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
83
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
84
+ )
85
+
86
+ def set_openmoe_args(
87
+ config: LlamaConfig,
88
+ num_experts: int,
89
+ moe_layer_interval: int,
90
+ router_topk: int = 2,
91
+ router_capacity_factor_train: float = 1.25,
92
+ router_capacity_factor_eval: float = 2.0,
93
+ router_min_capacity: int = 4,
94
+ router_noisy_policy: str = None,
95
+ router_drop_tks: bool = True,
96
+ router_aux_loss_factor: float = 0.01,
97
+ router_z_loss_factor: float = 0.0001,
98
+ mlp_gated: bool = True,
99
+ label_smoothing: float = 0.001,
100
+ z_loss_factor: float = 0.01,
101
+ enable_load_balance: bool = False,
102
+ load_balance_tolerance: float = 0.1,
103
+ load_balance_beam_width: int = 8,
104
+ load_balance_group_swap_factor: float = 0.4,
105
+ enable_kernel: bool = False,
106
+ enable_comm_overlap: bool = False,
107
+ enable_hierarchical_alltoall: bool = False,
108
+ ) -> None:
109
+ """
110
+ MoE related arguments.
111
+ It inserts the MoE arguments into the Llama config.
112
+
113
+ Args:
114
+ config (LlamaConfig): Transformers Llama config.
115
+ num_experts (int, optional): Number of experts.
116
+ moe_layer_interval (int, optional): The interval moe layer.
117
+ router_topk (int, optional): Moe router top k. Defaults to 2.
118
+ router_capacity_factor_train (float, optional): Moe router max capacity for train. Defaults to 1.25.
119
+ router_capacity_factor_eval (float, optional): Moe router max capacity for eval. Defaults to 2.0.
120
+ router_min_capacity (int, optional): Moe router min capacity. Defaults to 4.
121
+ router_noisy_policy (str, optional): Moe router noisy policy. You can choose [Jitter, Gaussian, None]. Defaults to None.
122
+ router_drop_tks (bool, optional): Whether moe router drop tokens which exceed max capacity. Defaults to True.
123
+ router_aux_loss_factor (float, optional): Moe router aux loss. You can refer to STMoE for details. Defaults to 0.01.
124
+ router_z_loss_factor (float, optional): Moe router z loss. You can refer to STMoE for details. Defaults to 0.01.
125
+ mlp_gated (bool, optional): Use gate in mlp. Defaults to True.
126
+ label_smoothing (float, optional): Label smoothing. Defaults to 0.001.
127
+ z_loss_factor (float, optional): The final outputs' classification z loss factor. Defaults to 0.01.
128
+ enable_load_balance (bool, optional): Expert load balance. Defaults to False.
129
+ load_balance_tolerance (float, optional): Expert load balance search's difference tolerance. Defaults to 0.1.
130
+ load_balance_beam_width (int, optional): Expert load balance search's beam width. Defaults to 8.
131
+ load_balance_group_swap_factor (float, optional): Expert load balance group swap factor. Longer value encourages less swap. Defaults to 0.4.
132
+ enable_kernel (bool, optional): Use kernel optimization. Defaults to False.
133
+ enable_comm_overlap (bool, optional): Use communication overlap for MoE. Recommended to enable for muiti-node training. Defaults to False.
134
+ enable_hierarchical_alltoall (bool, optional): Use hierarchical alltoall for MoE. Defaults to False.
135
+ """
136
+ moe_args = dict(
137
+ num_experts=num_experts,
138
+ moe_layer_interval=moe_layer_interval,
139
+ router_topk=router_topk,
140
+ router_capacity_factor_train=router_capacity_factor_train,
141
+ router_capacity_factor_eval=router_capacity_factor_eval,
142
+ router_min_capacity=router_min_capacity,
143
+ router_noisy_policy=router_noisy_policy,
144
+ router_drop_tks=router_drop_tks,
145
+ router_aux_loss_factor=router_aux_loss_factor,
146
+ router_z_loss_factor=router_z_loss_factor,
147
+ mlp_gated=mlp_gated,
148
+ label_smoothing=label_smoothing,
149
+ z_loss_factor=z_loss_factor,
150
+ enable_load_balance=enable_load_balance,
151
+ load_balance_tolerance=load_balance_tolerance,
152
+ load_balance_beam_width=load_balance_beam_width,
153
+ load_balance_group_swap_factor=load_balance_group_swap_factor,
154
+ enable_kernel=enable_kernel,
155
+ enable_comm_overlap=enable_comm_overlap,
156
+ enable_hierarchical_alltoall=enable_hierarchical_alltoall,
157
+ )
158
+ set_moe_args(config, moe_args)
159
+
160
+
161
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
162
+ def _make_causal_mask(
163
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
164
+ ):
165
+ """
166
+ Make causal mask used for bi-directional self-attention.
167
+ """
168
+ bsz, tgt_len = input_ids_shape
169
+ mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
170
+ mask_cond = torch.arange(mask.size(-1), device=device)
171
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
172
+ mask = mask.to(dtype)
173
+
174
+ if past_key_values_length > 0:
175
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
176
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
177
+
178
+
179
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
180
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
181
+ """
182
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
183
+ """
184
+ bsz, src_len = mask.size()
185
+ tgt_len = tgt_len if tgt_len is not None else src_len
186
+
187
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
188
+
189
+ inverted_mask = 1.0 - expanded_mask
190
+
191
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
192
+
193
+
194
+ def rotate_half(x):
195
+ """Rotates half the hidden dims of the input."""
196
+ x1 = x[..., : x.shape[-1] // 2]
197
+ x2 = x[..., x.shape[-1] // 2 :]
198
+ return torch.cat((-x2, x1), dim=-1)
199
+
200
+
201
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
202
+ """Applies Rotary Position Embedding to the query and key tensors.
203
+
204
+ Args:
205
+ q (`torch.Tensor`): The query tensor.
206
+ k (`torch.Tensor`): The key tensor.
207
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
208
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
209
+ position_ids (`torch.Tensor`):
210
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
211
+ used to pass offsetted position ids when working with a KV-cache.
212
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
213
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
214
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
215
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
216
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
217
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
218
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
219
+ Returns:
220
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
221
+ """
222
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
223
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
224
+ q_embed = (q * cos) + (rotate_half(q) * sin)
225
+ k_embed = (k * cos) + (rotate_half(k) * sin)
226
+ return q_embed, k_embed
227
+
228
+ def SwiGLU(x):
229
+ """Gated linear unit activation function.
230
+ Args:
231
+ x : input array
232
+ axis: the axis along which the split should be computed (default: -1)
233
+ """
234
+ size = x.shape[-1]
235
+ assert size % 2 == 0, "axis size must be divisible by 2"
236
+ x1, x2 = torch.split(x, size // 2, -1)
237
+ return x1 * (x2 * torch.sigmoid(x2))
238
+
239
+
240
+ class OpenMoeMLP(nn.Module):
241
+ def __init__(self, config: LlamaConfig):
242
+ super().__init__()
243
+ self.pretraining_tp = config.pretraining_tp
244
+ self.hidden_size = config.hidden_size
245
+ self.intermediate_size = config.intermediate_size
246
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
247
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
248
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
249
+ self.hidden_act = config.hidden_act
250
+ self.act_fn = get_activation(self.hidden_act)
251
+ self.use_kernel = config.enable_kernel
252
+
253
+ def forward(self, x):
254
+ if self.pretraining_tp > 1:
255
+ slice = self.intermediate_size // self.pretraining_tp
256
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
257
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
258
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
259
+
260
+ gate_proj = torch.cat([F.linear(x, gate_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)
261
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)
262
+
263
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
264
+ down_proj = [F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.pretraining_tp)]
265
+ down_proj = sum(down_proj)
266
+ else:
267
+ if HAS_TRITON and self.use_kernel and self.hidden_act == "swiglu":
268
+ down_proj = self.down_proj(LlamaActCombine.apply(self.gate_proj(x), self.up_proj(x)))
269
+ else:
270
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
271
+
272
+ return down_proj
273
+
274
+
275
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
276
+ """
277
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
278
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
279
+ """
280
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
281
+ if n_rep == 1:
282
+ return hidden_states
283
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
284
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
285
+
286
+
287
+ class OpenMoeAttention(nn.Module):
288
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
289
+
290
+ def __init__(self, config: LlamaConfig):
291
+ super().__init__()
292
+ self.config = config
293
+ self.hidden_size = config.hidden_size
294
+ self.num_heads = config.num_attention_heads
295
+ self.head_dim = config.head_dim
296
+ self.num_key_value_heads = config.num_key_value_heads
297
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
298
+ self.pretraining_tp = config.pretraining_tp
299
+ self.max_position_embeddings = config.max_position_embeddings
300
+ self.rope_theta = config.rope_theta
301
+
302
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
303
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
304
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
305
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
306
+ self._init_rope()
307
+
308
+ def _init_rope(self):
309
+ if self.config.rope_scaling is None:
310
+ self.rotary_emb = LlamaRotaryEmbedding(
311
+ self.head_dim,
312
+ max_position_embeddings=self.max_position_embeddings,
313
+ base=self.rope_theta,
314
+ )
315
+ else:
316
+ raise ValueError(f"Only Original RotaryEmbedding is supported yet")
317
+
318
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
319
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
320
+
321
+ def forward(
322
+ self,
323
+ hidden_states: torch.Tensor,
324
+ attention_mask: Optional[torch.Tensor] = None,
325
+ position_ids: Optional[torch.LongTensor] = None,
326
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
327
+ output_attentions: bool = False,
328
+ use_cache: bool = False,
329
+ use_kernel: bool = True,
330
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
331
+ bsz, q_len, _ = hidden_states.size()
332
+
333
+ if self.pretraining_tp > 1:
334
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.pretraining_tp
335
+ query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim) // self.pretraining_tp, dim=0)
336
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
337
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
338
+
339
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp)]
340
+ query_states = torch.cat(query_states, dim=-1)
341
+
342
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp)]
343
+ key_states = torch.cat(key_states, dim=-1)
344
+
345
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp)]
346
+ value_states = torch.cat(value_states, dim=-1)
347
+
348
+ else:
349
+ query_states = self.q_proj(hidden_states)
350
+ key_states = self.k_proj(hidden_states)
351
+ value_states = self.v_proj(hidden_states)
352
+
353
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) # (bsz, num_heads, q_len, head_dim)
354
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) # (bsz, num_heads, q_len, head_dim)
355
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) # (bsz, num_heads, q_len, head_dim)
356
+
357
+ kv_seq_len = key_states.shape[-2]
358
+ if past_key_value is not None:
359
+ kv_seq_len += past_key_value[0].shape[-2]
360
+ # reuse k, v, self_attention
361
+ key_states = torch.cat([past_key_value[0], key_states], dim=2) # (bsz, num_heads, q_len+past_kv_len, head_dim)
362
+ value_states = torch.cat([past_key_value[1], value_states], dim=2) # (bsz, num_heads, q_len+past_kv_len, head_dim)
363
+
364
+ past_key_value = (key_states, value_states) if use_cache else None
365
+
366
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
367
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
368
+
369
+ # repeat k/v heads if n_kv_heads < n_heads
370
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
371
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
372
+
373
+ if HAS_FLASH_ATTN and use_kernel:
374
+ from flash_attn import flash_attn_func
375
+
376
+ query_states = query_states.transpose(1, 2)
377
+ key_states = key_states.transpose(1, 2)
378
+ value_states = value_states.transpose(1, 2)
379
+ attn_output = flash_attn_func(query_states, key_states, value_states, softmax_scale=1.0, causal=True)
380
+ attn_output = attn_output.transpose(1, 2).contiguous()
381
+ else:
382
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
383
+
384
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
385
+ raise ValueError(
386
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
387
+ f" {attn_weights.size()}"
388
+ )
389
+
390
+ if attention_mask is not None:
391
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
392
+ raise ValueError(
393
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
394
+ )
395
+ if self.training:
396
+ attention_mask = attention_mask.clone().detach()
397
+ attention_mask[:, :, :, 0] = 0
398
+ attn_weights = attn_weights + attention_mask
399
+
400
+ # upcast attention to fp32
401
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
402
+ attn_output = torch.matmul(attn_weights, value_states)
403
+
404
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
405
+ raise ValueError(
406
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
407
+ f" {attn_output.size()}"
408
+ )
409
+
410
+ attn_output = attn_output.transpose(1, 2).contiguous()
411
+ attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
412
+
413
+ if self.pretraining_tp > 1:
414
+ attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
415
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.pretraining_tp, dim=1)
416
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.pretraining_tp)])
417
+ else:
418
+ attn_output = self.o_proj(attn_output)
419
+
420
+ if not output_attentions:
421
+ attn_weights = None
422
+
423
+ return attn_output, attn_weights, past_key_value
424
+
425
+
426
+ class OpenMoeDecoderLayer(nn.Module):
427
+ def __init__(self, config: LlamaConfig, moe: bool):
428
+ super().__init__()
429
+ self.hidden_size = config.hidden_size
430
+ self.moe = moe
431
+ self.self_attn = OpenMoeAttention(config=config)
432
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
433
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
434
+ if self.moe:
435
+ self.mlp = SparseMLP(
436
+ num_experts=config.num_experts,
437
+ hidden_size=config.hidden_size,
438
+ intermediate_size=config.intermediate_size,
439
+ router_top_k=config.router_topk,
440
+ router_capacity_factor_train=config.router_capacity_factor_train,
441
+ router_capacity_factor_eval=config.router_capacity_factor_eval,
442
+ router_min_capacity=config.router_min_capacity,
443
+ router_noisy_policy=config.router_noisy_policy,
444
+ router_drop_tks=config.router_drop_tks,
445
+ mlp_activation=config.hidden_act,
446
+ mlp_gated=config.mlp_gated,
447
+ enable_load_balance=config.enable_load_balance,
448
+ load_balance_tolerance=config.load_balance_tolerance,
449
+ load_balance_beam_width=config.load_balance_beam_width,
450
+ load_balance_group_swap_factor=config.load_balance_group_swap_factor,
451
+ enable_kernel=config.enable_kernel,
452
+ enable_comm_overlap=config.enable_comm_overlap,
453
+ )
454
+ self.pre_extra_mlp_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
455
+ self.extra_mlp = OpenMoeMLP(config)
456
+ else:
457
+ self.mlp = OpenMoeMLP(config)
458
+
459
+ def forward(
460
+ self,
461
+ hidden_states: torch.Tensor,
462
+ attention_mask: Optional[torch.Tensor] = None,
463
+ position_ids: Optional[torch.LongTensor] = None,
464
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
465
+ output_attentions: Optional[bool] = False,
466
+ use_cache: Optional[bool] = False,
467
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
468
+ """
469
+ Args:
470
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
471
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
472
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
473
+ output_attentions (`bool`, *optional*):
474
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
475
+ returned tensors for more detail.
476
+ use_cache (`bool`, *optional*):
477
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
478
+ (see `past_key_values`).
479
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
480
+ """
481
+
482
+ residual = hidden_states
483
+
484
+ hidden_states = self.input_layernorm(hidden_states)
485
+
486
+ # Self Attention
487
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
488
+ hidden_states=hidden_states,
489
+ attention_mask=attention_mask,
490
+ position_ids=position_ids,
491
+ past_key_value=past_key_value,
492
+ output_attentions=output_attentions,
493
+ use_cache=use_cache,
494
+ )
495
+ hidden_states = residual + hidden_states
496
+
497
+ # Fully Connected
498
+ residual = hidden_states
499
+ hidden_states = self.post_attention_layernorm(hidden_states)
500
+ hidden_states = self.mlp(hidden_states)
501
+ hidden_states = residual + hidden_states
502
+
503
+ if self.moe:
504
+ residual = hidden_states
505
+ hidden_states = self.pre_extra_mlp_layernorm(hidden_states)
506
+ hidden_states = self.extra_mlp(hidden_states)
507
+ hidden_states = residual + hidden_states
508
+
509
+ outputs = (hidden_states,)
510
+
511
+ if output_attentions:
512
+ outputs += (self_attn_weights,)
513
+
514
+ if use_cache:
515
+ outputs += (present_key_value,)
516
+
517
+ return outputs
518
+
519
+
520
+ LLAMA_START_DOCSTRING = r"""
521
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
522
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
523
+ etc.)
524
+
525
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
526
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
527
+ and behavior.
528
+
529
+ Parameters:
530
+ config ([`LlamaConfig`]):
531
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
532
+ load the weights associated with the model, only the configuration. Check out the
533
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
534
+ """
535
+
536
+
537
+ @add_start_docstrings(
538
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
539
+ LLAMA_START_DOCSTRING,
540
+ )
541
+ class OpenMoePreTrainedModel(PreTrainedModel):
542
+ config_class = LlamaConfig
543
+ base_model_prefix = "model"
544
+ supports_gradient_checkpointing = True
545
+ _no_split_modules = ["LlamaDecoderLayer"]
546
+ _skip_keys_device_placement = "past_key_values"
547
+
548
+ def _init_weights(self, module):
549
+ std = self.config.initializer_range
550
+ if isinstance(module, nn.Linear):
551
+ module.weight.data.normal_(mean=0.0, std=std)
552
+ if module.bias is not None:
553
+ module.bias.data.zero_()
554
+ elif isinstance(module, nn.Embedding):
555
+ module.weight.data.normal_(mean=0.0, std=std)
556
+ if module.padding_idx is not None:
557
+ module.weight.data[module.padding_idx].zero_()
558
+
559
+ def _set_gradient_checkpointing(self, module, value=False):
560
+ if isinstance(module, OpenMoeModel):
561
+ module.gradient_checkpointing = value
562
+
563
+
564
+ LLAMA_INPUTS_DOCSTRING = r"""
565
+ Args:
566
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
567
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
568
+ it.
569
+
570
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
571
+ [`PreTrainedTokenizer.__call__`] for details.
572
+
573
+ [What are input IDs?](../glossary#input-ids)
574
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
575
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
576
+
577
+ - 1 for tokens that are **not masked**,
578
+ - 0 for tokens that are **masked**.
579
+
580
+ [What are attention masks?](../glossary#attention-mask)
581
+
582
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
583
+ [`PreTrainedTokenizer.__call__`] for details.
584
+
585
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
586
+ `past_key_values`).
587
+
588
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
589
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
590
+ information on the default strategy.
591
+
592
+ - 1 indicates the head is **not masked**,
593
+ - 0 indicates the head is **masked**.
594
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
595
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
596
+ config.n_positions - 1]`.
597
+
598
+ [What are position IDs?](../glossary#position-ids)
599
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
600
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
601
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
602
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
603
+
604
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
605
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
606
+
607
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
608
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
609
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
610
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
611
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
612
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
613
+ model's internal embedding lookup matrix.
614
+ use_cache (`bool`, *optional*):
615
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
616
+ `past_key_values`).
617
+ output_attentions (`bool`, *optional*):
618
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
619
+ tensors for more detail.
620
+ output_hidden_states (`bool`, *optional*):
621
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
622
+ more detail.
623
+ return_dict (`bool`, *optional*):
624
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
625
+ """
626
+
627
+
628
+ @add_start_docstrings(
629
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
630
+ LLAMA_START_DOCSTRING,
631
+ )
632
+ class OpenMoeModel(OpenMoePreTrainedModel):
633
+ """
634
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
635
+
636
+ Args:
637
+ config: LlamaConfig
638
+ """
639
+
640
+ def __init__(self, config: LlamaConfig):
641
+ super().__init__(config)
642
+ self.padding_idx = config.pad_token_id
643
+ self.vocab_size = config.vocab_size
644
+
645
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
646
+ self.layers = nn.ModuleList(
647
+ [
648
+ OpenMoeDecoderLayer(config, moe=True if (i + 1) % config.moe_layer_interval == 0 else False)
649
+ for i in range(config.num_hidden_layers)
650
+ ]
651
+ )
652
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
653
+
654
+ self.gradient_checkpointing = False
655
+ # Initialize weights and apply final processing
656
+ self.post_init()
657
+
658
+ def get_input_embeddings(self):
659
+ return self.embed_tokens
660
+
661
+ def set_input_embeddings(self, value):
662
+ self.embed_tokens = value
663
+
664
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
665
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
666
+ # create causal mask
667
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
668
+ combined_attention_mask = None
669
+ if input_shape[-1] > 1:
670
+ combined_attention_mask = _make_causal_mask(
671
+ input_shape,
672
+ inputs_embeds.dtype,
673
+ device=inputs_embeds.device,
674
+ past_key_values_length=past_key_values_length,
675
+ )
676
+
677
+ if attention_mask is not None:
678
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
679
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
680
+ inputs_embeds.device
681
+ )
682
+ combined_attention_mask = (
683
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
684
+ )
685
+
686
+ return combined_attention_mask
687
+
688
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
689
+ def forward(
690
+ self,
691
+ input_ids: torch.LongTensor = None,
692
+ attention_mask: Optional[torch.Tensor] = None,
693
+ position_ids: Optional[torch.LongTensor] = None,
694
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
695
+ inputs_embeds: Optional[torch.FloatTensor] = None,
696
+ use_cache: Optional[bool] = None,
697
+ output_attentions: Optional[bool] = None,
698
+ output_hidden_states: Optional[bool] = None,
699
+ return_dict: Optional[bool] = None,
700
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
701
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
702
+ output_hidden_states = (
703
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
704
+ )
705
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
706
+
707
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
708
+
709
+ # retrieve input_ids and inputs_embeds
710
+ if input_ids is not None and inputs_embeds is not None:
711
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
712
+ elif input_ids is not None:
713
+ batch_size, seq_length = input_ids.shape
714
+ elif inputs_embeds is not None:
715
+ batch_size, seq_length, _ = inputs_embeds.shape
716
+ else:
717
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
718
+
719
+ seq_length_with_past = seq_length
720
+ past_key_values_length = 0
721
+
722
+ if past_key_values is not None:
723
+ past_key_values_length = past_key_values[0][0].shape[2]
724
+ seq_length_with_past = seq_length_with_past + past_key_values_length
725
+
726
+ if position_ids is None:
727
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
728
+ position_ids = torch.arange(
729
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
730
+ )
731
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
732
+ else:
733
+ position_ids = position_ids.view(-1, seq_length).long()
734
+
735
+ if inputs_embeds is None:
736
+ inputs_embeds = self.embed_tokens(input_ids)
737
+ # embed positions
738
+ if attention_mask is None:
739
+ attention_mask = torch.ones(
740
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
741
+ )
742
+ attention_mask = self._prepare_decoder_attention_mask(
743
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
744
+ )
745
+
746
+ hidden_states = inputs_embeds
747
+
748
+ if self.gradient_checkpointing and self.training:
749
+ if use_cache:
750
+ logger.warning_once(
751
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
752
+ )
753
+ use_cache = False
754
+
755
+ # decoder layers
756
+ all_hidden_states = () if output_hidden_states else None
757
+ all_self_attns = () if output_attentions else None
758
+ next_decoder_cache = () if use_cache else None
759
+
760
+ for idx, decoder_layer in enumerate(self.layers):
761
+ if output_hidden_states:
762
+ all_hidden_states += (hidden_states,)
763
+
764
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
765
+
766
+ if self.gradient_checkpointing and self.training:
767
+
768
+ def create_custom_forward(module):
769
+ def custom_forward(*inputs):
770
+ # None for past_key_value
771
+ return module(*inputs, output_attentions, None)
772
+
773
+ return custom_forward
774
+
775
+ layer_outputs = torch.utils.checkpoint.checkpoint(
776
+ create_custom_forward(decoder_layer),
777
+ hidden_states,
778
+ attention_mask,
779
+ position_ids,
780
+ None,
781
+ )
782
+ else:
783
+ layer_outputs = decoder_layer(
784
+ hidden_states,
785
+ attention_mask=attention_mask,
786
+ position_ids=position_ids,
787
+ past_key_value=past_key_value,
788
+ output_attentions=output_attentions,
789
+ use_cache=use_cache,
790
+ )
791
+
792
+ hidden_states = layer_outputs[0]
793
+
794
+ if use_cache:
795
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
796
+
797
+ if output_attentions:
798
+ all_self_attns += (layer_outputs[1],)
799
+
800
+ hidden_states = self.norm(hidden_states)
801
+
802
+ # add hidden states from the last decoder layer
803
+ if output_hidden_states:
804
+ all_hidden_states += (hidden_states,)
805
+
806
+ next_cache = next_decoder_cache if use_cache else None
807
+ if not return_dict:
808
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
809
+ return BaseModelOutputWithPast(
810
+ last_hidden_state=hidden_states,
811
+ past_key_values=next_cache,
812
+ hidden_states=all_hidden_states,
813
+ attentions=all_self_attns,
814
+ )
815
+
816
+
817
+ class OpenMoeForCausalLM(OpenMoePreTrainedModel):
818
+ # _tied_weights_keys = ["lm_head.weight"]
819
+
820
+ def __init__(self, config):
821
+ super().__init__(config)
822
+ self.model = OpenMoeModel(config)
823
+ self.pretraining_tp = config.pretraining_tp
824
+ self.vocab_size = config.vocab_size
825
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
826
+
827
+ # Initialize weights and apply final processing
828
+ self.post_init()
829
+
830
+ def get_input_embeddings(self):
831
+ return self.model.embed_tokens
832
+
833
+ def set_input_embeddings(self, value):
834
+ self.model.embed_tokens = value
835
+
836
+ def get_output_embeddings(self):
837
+ return self.lm_head
838
+
839
+ def set_output_embeddings(self, new_embeddings):
840
+ self.lm_head = new_embeddings
841
+
842
+ def set_decoder(self, decoder):
843
+ self.model = decoder
844
+
845
+ def get_decoder(self):
846
+ return self.model
847
+
848
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
849
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
850
+ def forward(
851
+ self,
852
+ input_ids: torch.LongTensor = None,
853
+ attention_mask: Optional[torch.Tensor] = None,
854
+ position_ids: Optional[torch.LongTensor] = None,
855
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
856
+ inputs_embeds: Optional[torch.FloatTensor] = None,
857
+ labels: Optional[torch.LongTensor] = None,
858
+ use_cache: Optional[bool] = None,
859
+ output_attentions: Optional[bool] = None,
860
+ output_hidden_states: Optional[bool] = None,
861
+ return_dict: Optional[bool] = None,
862
+ chunk_head: Optional[bool] = True,
863
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
864
+ r"""
865
+ Args:
866
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
867
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
868
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
869
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
870
+
871
+ Returns:
872
+
873
+ Example:
874
+
875
+ ```python
876
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
877
+
878
+ >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
879
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
880
+
881
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
882
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
883
+
884
+ >>> # Generate
885
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
886
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
887
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
888
+ ```"""
889
+ # reset moe loss
890
+ MOE_MANAGER.reset_loss()
891
+
892
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
893
+ output_hidden_states = (
894
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
895
+ )
896
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
897
+
898
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
899
+ outputs = self.model(
900
+ input_ids=input_ids,
901
+ attention_mask=attention_mask,
902
+ position_ids=position_ids,
903
+ past_key_values=past_key_values,
904
+ inputs_embeds=inputs_embeds,
905
+ use_cache=use_cache,
906
+ output_attentions=output_attentions,
907
+ output_hidden_states=output_hidden_states,
908
+ return_dict=return_dict,
909
+ )
910
+
911
+ hidden_states = outputs[0]
912
+ if self.pretraining_tp > 1:
913
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.pretraining_tp, dim=0)
914
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.pretraining_tp)]
915
+ logits = torch.cat(logits, dim=-1)
916
+
917
+ loss = None
918
+ # if no training, just do forward
919
+ if labels is None:
920
+ logits = self.lm_head(hidden_states)
921
+ logits = logits.float()
922
+ # the vocab size for openmoe is 30w+
923
+ # which causes great activation memory in training, up to 20G for one sequence
924
+ # so we use chunk and checkpoint to reduce memory
925
+ else:
926
+ if chunk_head == True:
927
+
928
+ def create_custom_forward(module):
929
+ def custom_forward(*inputs):
930
+ logits = module(inputs[0])
931
+ logits = logits.float()
932
+ # Shift so that tokens < n predict n
933
+ shift_logits = logits[..., :-1, :].contiguous().float()
934
+ shift_labels = inputs[1][..., 1:].contiguous()
935
+ # Flatten the tokens
936
+ loss = self._calculate_loss(shift_logits, shift_labels)
937
+ return loss
938
+
939
+ return custom_forward
940
+
941
+ aux_loss, z_loss = self._calculate_router_loss()
942
+ loss = aux_loss + z_loss
943
+ for batch_idx in range(hidden_states.shape[0]):
944
+ loss = loss + torch.utils.checkpoint.checkpoint(
945
+ create_custom_forward(self.lm_head),
946
+ hidden_states[batch_idx : batch_idx + 1, :],
947
+ labels[batch_idx : batch_idx + 1, :],
948
+ )
949
+ logits = None
950
+ else:
951
+ logits = self.lm_head(hidden_states)
952
+ logits = logits.float()
953
+ # Shift so that tokens < n predict n
954
+ shift_logits = logits[..., :-1, :].contiguous()
955
+ shift_labels = labels[..., 1:].contiguous()
956
+ # Flatten the tokens
957
+ aux_loss, z_loss = self._calculate_router_loss()
958
+ loss = aux_loss + z_loss
959
+ loss = loss + self._calculate_loss(shift_logits, shift_labels)
960
+
961
+ if not return_dict:
962
+ output = (logits,) + outputs[1:]
963
+ return (loss,) + output if loss is not None else output
964
+
965
+ return CausalLMOutputWithPast(
966
+ loss=loss,
967
+ logits=logits,
968
+ past_key_values=outputs.past_key_values,
969
+ hidden_states=outputs.hidden_states,
970
+ attentions=outputs.attentions,
971
+ )
972
+
973
+ def prepare_inputs_for_generation(
974
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
975
+ ):
976
+ if past_key_values:
977
+ input_ids = input_ids[:, -1:]
978
+
979
+ position_ids = kwargs.get("position_ids", None)
980
+ if attention_mask is not None and position_ids is None:
981
+ # create position_ids on the fly for batch generation
982
+ position_ids = attention_mask.long().cumsum(-1) - 1
983
+ position_ids.masked_fill_(attention_mask == 0, 1)
984
+ if past_key_values:
985
+ position_ids = position_ids[:, -1].unsqueeze(-1)
986
+
987
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
988
+ if inputs_embeds is not None and past_key_values is None:
989
+ model_inputs = {"inputs_embeds": inputs_embeds}
990
+ else:
991
+ model_inputs = {"input_ids": input_ids}
992
+
993
+ model_inputs.update(
994
+ {
995
+ "position_ids": position_ids,
996
+ "past_key_values": past_key_values,
997
+ "use_cache": kwargs.get("use_cache"),
998
+ "attention_mask": attention_mask,
999
+ }
1000
+ )
1001
+ return model_inputs
1002
+
1003
+ @staticmethod
1004
+ def _reorder_cache(past_key_values, beam_idx):
1005
+ reordered_past = ()
1006
+ for layer_past in past_key_values:
1007
+ reordered_past += (
1008
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1009
+ )
1010
+ return reordered_past
1011
+
1012
+ def _calculate_router_loss(self, aux_loss: list = None, z_loss: list = None):
1013
+ if aux_loss is None or z_loss is None:
1014
+ aux_loss, z_loss = MOE_MANAGER.get_loss()
1015
+ assert len(aux_loss) == len(z_loss) == self.config.num_hidden_layers // self.config.moe_layer_interval
1016
+ aux_loss = self.config.router_aux_loss_factor * sum(aux_loss) / len(aux_loss)
1017
+ z_loss = self.config.router_z_loss_factor * sum(z_loss) / len(z_loss)
1018
+ return aux_loss, z_loss
1019
+
1020
+ def _calculate_loss(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
1021
+ """Compute cross entropy and entropy for log probs and targets.
1022
+
1023
+ Args:
1024
+ logits: [batch, length, num_classes] float array.
1025
+ targets: categorical targets [batch, length] int array.
1026
+
1027
+ Returns:
1028
+ Tuple of scalar loss.
1029
+ """
1030
+ if len(logits.shape) != len(targets.shape) + 1:
1031
+ raise ValueError(
1032
+ "Incorrect shapes. Got shape %s logits and %s targets" % (str(logits.shape), str(targets.shape))
1033
+ )
1034
+ vocab_size = logits.shape[-1]
1035
+ confidence = 1.0 - self.config.label_smoothing
1036
+ low_confidence = (1.0 - confidence) / (vocab_size - 1)
1037
+ normalizing_constant = -(
1038
+ confidence * math.log(confidence) + (vocab_size - 1) * low_confidence * math.log(low_confidence + 1e-20)
1039
+ )
1040
+
1041
+ # one hot
1042
+ soft_targets = targets[..., None] == torch.arange(vocab_size, device=targets.device).reshape(
1043
+ (1,) * len(targets.shape) + (-1,)
1044
+ )
1045
+ soft_targets = torch.where(
1046
+ soft_targets, torch.full_like(soft_targets, confidence), torch.full_like(soft_targets, low_confidence)
1047
+ )
1048
+ soft_targets = soft_targets.to(torch.float32)
1049
+
1050
+ # cross entropy
1051
+ total_loss = ZLossCrossEntropy.apply(logits, soft_targets, self.config.z_loss_factor)
1052
+ total_loss = total_loss - normalizing_constant
1053
+ total_loss = torch.mean(torch.sum(total_loss, dim=-1), dim=0)
1054
+ return total_loss
1055
+
1056
+
1057
+ class ZLossCrossEntropy(torch.autograd.Function):
1058
+ """Computes cross entropy loss with stable custom gradient.
1059
+
1060
+ Computes a stabilized-gradient version of:
1061
+ -jnp.sum(targets * nn.log_softmax(logits), axis=-1)
1062
+
1063
+ If z_loss > 0, then an auxiliary loss equal to z_loss*log(z)^2
1064
+ will be added to the cross entropy loss (z = softmax normalization constant).
1065
+ The two uses of z_loss are:
1066
+ 1. To keep the logits from drifting too far from zero, which can cause
1067
+ unacceptable roundoff errors in bfloat16.
1068
+ 2. To encourage the logits to be normalized log-probabilities.
1069
+
1070
+ Args:
1071
+ logits: [batch, length, num_classes] float array.
1072
+ targets: categorical one-hot targets [batch, length, num_classes] float
1073
+ array.
1074
+ z_loss: coefficient for auxilliary z-loss loss term.
1075
+
1076
+ Returns:
1077
+ tuple with the total loss and the z_loss, both
1078
+ float arrays with shape [batch, length].
1079
+ """
1080
+
1081
+ @staticmethod
1082
+ def forward(ctx, logits, targets, z_loss):
1083
+ max_logit = torch.max(logits, dim=-1, keepdim=True)[0]
1084
+ shifted = logits - max_logit
1085
+ exp_shifted = torch.exp(shifted)
1086
+ sum_exp = torch.sum(exp_shifted, axis=-1, keepdims=True)
1087
+ sum_exp_log = torch.log(sum_exp)
1088
+ log_softmax = shifted - sum_exp_log
1089
+ loss = -torch.sum(targets * log_softmax, axis=-1)
1090
+ # Add auxilliary z-loss term.
1091
+ log_z = torch.squeeze(sum_exp_log + max_logit, axis=-1)
1092
+ total_z_loss = z_loss * torch.square(log_z)
1093
+ loss += total_z_loss
1094
+ ctx.z_loss = z_loss
1095
+ ctx.save_for_backward(logits, targets, exp_shifted, sum_exp, log_softmax, log_z)
1096
+ return loss
1097
+
1098
+ @staticmethod
1099
+ def backward(ctx, *grad_outputs):
1100
+ assert len(grad_outputs) == 1
1101
+ g = grad_outputs[0]
1102
+ z_loss = ctx.z_loss
1103
+ logits, targets, exp_shifted, sum_exp, log_softmax, log_z = ctx.saved_tensors
1104
+ # z-loss term adds the (2 * z_loss * log_z) factor.
1105
+ deriv = (1 + 2 * z_loss * log_z).unsqueeze(-1) * exp_shifted / sum_exp - targets
1106
+ g_logits = g.unsqueeze(-1) * deriv
1107
+ g_targets = -g.unsqueeze(-1) * log_softmax
1108
+
1109
+ return (
1110
+ g_logits.to(logits.dtype),
1111
+ g_targets.to(targets.dtype),
1112
+ None,
1113
+ )