Upload configuration_phimoe.py with huggingface_hub
Browse files- configuration_phimoe.py +244 -0
configuration_phimoe.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" PyTorch Phi-MoE model."""
|
17 |
+
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
PHIMOE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
27 |
+
"microsoft/Phi-3.5-MoE-instruct": "https://huggingface.co/microsoft/Phi-3.5-MoE-instruct/resolve/main/config.json",
|
28 |
+
}
|
29 |
+
|
30 |
+
class PhiMoEConfig(PretrainedConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`PhiMoEModel`]. It is used to instantiate a Phi-MoE
|
33 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
34 |
+
defaults will yield a similar configuration to that of the
|
35 |
+
[microsoft/Phi-3.5-MoE-instruct](https://huggingface.co/microsoft/Phi-3.5-MoE-instruct).
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 32064):
|
43 |
+
Vocabulary size of the PhiMoE model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`PhiMoEModel`]
|
45 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
46 |
+
Dimension of the hidden representations.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 6400):
|
48 |
+
Dimension of the MLP representations.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
+
Number of hidden layers in the Transformer encoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
54 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
|
60 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
61 |
+
The non-linear activation function (function or string) in the decoder.
|
62 |
+
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
|
63 |
+
The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention
|
64 |
+
allows sequence of up to 4096*32 tokens.
|
65 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
66 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
67 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
68 |
+
The epsilon used by the rms normalization layers.
|
69 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
70 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
71 |
+
relevant if `config.is_decoder=True`.
|
72 |
+
pad_token_id (`int`, *optional*):
|
73 |
+
The id of the padding token.
|
74 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
75 |
+
The id of the "beginning-of-sequence" token.
|
76 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
77 |
+
The id of the "end-of-sequence" token.
|
78 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
79 |
+
Whether the model's input and output word embeddings should be tied.
|
80 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
81 |
+
The base period of the RoPE embeddings.
|
82 |
+
rope_scaling (`dict`, *optional*):
|
83 |
+
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
84 |
+
contain the following keys: `type`, `short_factor`, `long_factor`, `short_mscale`, `long_mscale` and
|
85 |
+
`original_max_position_embeddings`. The `type` must be `longrope`, the `short_mscale` and `long_scale` must
|
86 |
+
be numbers, the `short_factor` and `long_factor` must be lists of numbers with the same length as half of
|
87 |
+
the attention head size and the `original_max_position_embeddings` must be an integer.
|
88 |
+
sliding_window (`int`, *optional*):
|
89 |
+
Sliding window attention window size. If not specified, will default to `262144`.
|
90 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
91 |
+
The dropout ratio for the attention probabilities.
|
92 |
+
num_experts_per_tok (`int`, *optional*, defaults to 2):
|
93 |
+
The number of experts to root per-token, can be also interpreted as the `top-p` routing
|
94 |
+
parameter
|
95 |
+
num_local_experts (`int`, *optional*, defaults to 16):
|
96 |
+
Number of experts per Sparse MLP layer.
|
97 |
+
output_router_logits (`bool`, *optional*, defaults to `False`):
|
98 |
+
Whether or not the router logits should be returned by the model. Enabeling this will also
|
99 |
+
allow the model to output the auxiliary loss. See [here]() for more details
|
100 |
+
router_aux_loss_coef (`float`, *optional*, defaults to 0.0):
|
101 |
+
The aux loss factor for the total loss.
|
102 |
+
router_jitter_noise (`float`, *optional*, defaults to 0.01):
|
103 |
+
Amount of noise to add to the router.
|
104 |
+
|
105 |
+
```python
|
106 |
+
>>> from transformers import PhiMoEModel, PhiMoEConfig
|
107 |
+
|
108 |
+
>>> # Initializing a Phi-3 style configuration
|
109 |
+
>>> configuration = PhiMoEConfig.from_pretrained("microsoft/Phi-3.5-MoE-instruct")
|
110 |
+
|
111 |
+
>>> # Initializing a model from the configuration
|
112 |
+
>>> model = PhiMoEModel(configuration)
|
113 |
+
|
114 |
+
>>> # Accessing the model configuration
|
115 |
+
>>> configuration = model.config
|
116 |
+
```"""
|
117 |
+
|
118 |
+
model_type = "phimoe"
|
119 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
120 |
+
|
121 |
+
def __init__(
|
122 |
+
self,
|
123 |
+
vocab_size=32064,
|
124 |
+
hidden_size=4096,
|
125 |
+
intermediate_size=6400,
|
126 |
+
num_hidden_layers=32,
|
127 |
+
num_attention_heads=32,
|
128 |
+
num_key_value_heads=8,
|
129 |
+
hidden_act="silu",
|
130 |
+
max_position_embeddings=4096 * 32,
|
131 |
+
initializer_range=0.02,
|
132 |
+
rms_norm_eps=1e-5,
|
133 |
+
use_cache=True,
|
134 |
+
pad_token_id=None,
|
135 |
+
bos_token_id=1,
|
136 |
+
eos_token_id=2,
|
137 |
+
tie_word_embeddings=False,
|
138 |
+
rope_theta=1e6,
|
139 |
+
rope_scaling=None,
|
140 |
+
sliding_window=None,
|
141 |
+
attention_dropout=0.0,
|
142 |
+
num_experts_per_tok=2,
|
143 |
+
num_local_experts=16,
|
144 |
+
output_router_logits=False,
|
145 |
+
router_aux_loss_coef=0.001,
|
146 |
+
router_jitter_noise=0.01,
|
147 |
+
input_jitter_noise=0.0,
|
148 |
+
attention_bias = False,
|
149 |
+
lm_head_bias = False,
|
150 |
+
**kwargs,
|
151 |
+
):
|
152 |
+
self.vocab_size = vocab_size
|
153 |
+
self.max_position_embeddings = max_position_embeddings
|
154 |
+
self.hidden_size = hidden_size
|
155 |
+
self.intermediate_size = intermediate_size
|
156 |
+
self.num_hidden_layers = num_hidden_layers
|
157 |
+
self.num_attention_heads = num_attention_heads
|
158 |
+
self.sliding_window = sliding_window
|
159 |
+
self.attention_bias = attention_bias
|
160 |
+
self.lm_head_bias = lm_head_bias
|
161 |
+
# for backward compatibility
|
162 |
+
if num_key_value_heads is None:
|
163 |
+
num_key_value_heads = num_attention_heads
|
164 |
+
|
165 |
+
self.num_key_value_heads = num_key_value_heads
|
166 |
+
self.hidden_act = hidden_act
|
167 |
+
self.initializer_range = initializer_range
|
168 |
+
self.rms_norm_eps = rms_norm_eps
|
169 |
+
self.use_cache = use_cache
|
170 |
+
self.rope_theta = rope_theta
|
171 |
+
self.attention_dropout = attention_dropout
|
172 |
+
|
173 |
+
self.num_experts_per_tok = num_experts_per_tok
|
174 |
+
self.num_local_experts = num_local_experts
|
175 |
+
self.output_router_logits = output_router_logits
|
176 |
+
self.router_aux_loss_coef = router_aux_loss_coef
|
177 |
+
self.router_jitter_noise = router_jitter_noise
|
178 |
+
self.input_jitter_noise = input_jitter_noise
|
179 |
+
|
180 |
+
self.rope_scaling = rope_scaling
|
181 |
+
self._rope_scaling_validation()
|
182 |
+
|
183 |
+
super().__init__(
|
184 |
+
pad_token_id=pad_token_id,
|
185 |
+
bos_token_id=bos_token_id,
|
186 |
+
eos_token_id=eos_token_id,
|
187 |
+
tie_word_embeddings=tie_word_embeddings,
|
188 |
+
**kwargs,
|
189 |
+
)
|
190 |
+
|
191 |
+
def _rope_scaling_validation(self):
|
192 |
+
"""
|
193 |
+
Validate the `rope_scaling` configuration.
|
194 |
+
"""
|
195 |
+
if self.rope_scaling is None:
|
196 |
+
return
|
197 |
+
|
198 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 6:
|
199 |
+
raise ValueError(
|
200 |
+
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor`, `long_factor`, "
|
201 |
+
f"`short_mscale`, `long_mscale` and `original_max_position_embeddings`, got {self.rope_scaling}"
|
202 |
+
)
|
203 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
204 |
+
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
|
205 |
+
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
|
206 |
+
rope_scaling_short_mscale = self.rope_scaling.get("short_mscale", None)
|
207 |
+
rope_scaling_long_mscale = self.rope_scaling.get("long_mscale", None)
|
208 |
+
original_max_position_embeddings = self.rope_scaling.get("original_max_position_embeddings", None)
|
209 |
+
if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
|
210 |
+
raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
|
211 |
+
if not (
|
212 |
+
isinstance(rope_scaling_short_factor, list)
|
213 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
214 |
+
):
|
215 |
+
raise ValueError(
|
216 |
+
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
217 |
+
)
|
218 |
+
if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
|
219 |
+
raise ValueError(
|
220 |
+
f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
|
221 |
+
)
|
222 |
+
if not (
|
223 |
+
isinstance(rope_scaling_long_factor, list)
|
224 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
225 |
+
):
|
226 |
+
raise ValueError(
|
227 |
+
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
228 |
+
)
|
229 |
+
if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
|
230 |
+
raise ValueError(
|
231 |
+
f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
|
232 |
+
)
|
233 |
+
if not isinstance(rope_scaling_short_mscale, (int, float)):
|
234 |
+
raise ValueError(
|
235 |
+
f"`rope_scaling`'s short_mscale field must be a number, got {rope_scaling_short_mscale}"
|
236 |
+
)
|
237 |
+
if not isinstance(rope_scaling_long_mscale, (int, float)):
|
238 |
+
raise ValueError(
|
239 |
+
f"`rope_scaling`'s long_mscale field must be a number, got {rope_scaling_long_mscale}"
|
240 |
+
)
|
241 |
+
if not isinstance(original_max_position_embeddings, int):
|
242 |
+
raise ValueError(
|
243 |
+
f"`rope_scaling`'s original_max_position_embeddings field must be an integer, got {original_max_position_embeddings}"
|
244 |
+
)
|