File size: 6,378 Bytes
ec0f90b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
from exllamav2 import(
ExLlamaV2,
ExLlamaV2Config,
ExLlamaV2Cache,
ExLlamaV2Tokenizer,
model_init,
)
import argparse, os, math, time
import pandas, fastparquet
import torch
import torch.nn.functional as F
from conversion.tokenize import get_tokens
from conversion.quantize import list_live_tensors
import sys
import json
torch.cuda._lazy_init()
torch.set_printoptions(precision = 10)
# torch.backends.cuda.matmul.allow_tf32 = True
# torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = True
# torch.set_float32_matmul_precision("medium")
parser = argparse.ArgumentParser(description = "Test inference on ExLlamaV2 model")
parser.add_argument("-ed", "--eval_dataset", type = str, help = "Perplexity evaluation dataset (.parquet file)")
parser.add_argument("-er", "--eval_rows", type = int, default = 128, help = "Number of rows to apply from dataset")
parser.add_argument("-el", "--eval_length", type = int, default = 2048, help = "Max no. tokens per sample")
parser.add_argument("-p", "--prompt", type = str, help = "Generate from prompt")
parser.add_argument("-t", "--tokens", type = int, default = 128, help = "Max no. tokens")
parser.add_argument("-ps", "--prompt_speed", action = "store_true", help = "Test prompt processing (batch) speed over context length")
parser.add_argument("-s", "--speed", action = "store_true", help = "Test raw generation speed over context length")
# Initialize model and tokenizer
model_init.add_args(parser)
args = parser.parse_args()
model_init.check_args(args)
model_init.print_options(args)
model, tokenizer = model_init.init(args)
# Test generation
if args.prompt:
with torch.inference_mode():
cache = ExLlamaV2Cache(model)
ids = tokenizer.encode(args.prompt)
tokens_prompt = ids.shape[-1]
print(f" -- Warmup...")
model.forward(ids[:, -1:])
print(f" -- Generating (greedy sampling)...")
print()
print(args.prompt, end = "")
sys.stdout.flush()
time_begin = time.time()
if ids.shape[-1] > 1: model.forward(ids[:, :-1], cache, preprocess_only = True)
torch.cuda.synchronize()
time_prompt = time.time()
for i in range(args.tokens):
text1 = tokenizer.decode(ids[:, -2:])[0]
logits = model.forward(ids[:, -1:], cache)
sample = torch.argmax(logits[0, -1]).cpu().unsqueeze(0).unsqueeze(0)
ids = torch.cat((ids, sample), dim = -1)
text2 = tokenizer.decode(ids[:, -3:])[0]
text2 = text2[len(text1):]
print (text2, end = "")
# sys.stdout.flush()
time_end = time.time()
print()
print()
total_prompt = time_prompt - time_begin
total_gen = time_end - time_prompt
print(f"Prompt processed in {total_prompt:.2f} seconds, {tokens_prompt} tokens, {tokens_prompt / total_prompt:.2f} tokens/second")
print(f"Response generated in {total_gen:.2f} seconds, {args.tokens} tokens, {args.tokens / total_gen:.2f} tokens/second")
cache = None
# Test perplexity
if args.eval_dataset:
with torch.inference_mode():
eval_dataset = args.eval_dataset
eval_rows = args.eval_rows
eval_length = args.eval_length
print(f" -- Running perplexity test")
print(f" -- Dataset: {eval_dataset}")
print(f" -- Tokenizing eval data, {eval_rows} rows x {eval_length} tokens...")
eval_tokens = get_tokens(eval_rows, eval_length, eval_dataset, tokenizer)
print(f" -- Inference", end = "")
sys.stdout.flush()
logprob_sum = 0.0
logprob_count = 0
for i in range(eval_tokens.shape[0]):
#for i in range(126, 127):
if i % 10 == 0: print(".", end = "")
sys.stdout.flush()
input_ids = eval_tokens[i:i+1, :]
input_ids = input_ids[:, :-1]
logits = model.forward(input_ids)
# print (tokenizer.decode(input_ids))
target_ids = input_ids[:, 1:].to(logits.device)
log_probs = F.log_softmax(logits, dim=-1)
token_log_probs = log_probs.gather(-1, target_ids.unsqueeze(-1)).squeeze(-1)
logprob_sum += token_log_probs.sum().item()
logprob_count += target_ids.numel()
print()
mean_log_prob = logprob_sum / logprob_count
perplexity = math.exp(-mean_log_prob)
print(f" -- Evaluation perplexity: {perplexity:.4f}")
xx = 0
# Test prompt speed
if args.prompt_speed:
with torch.inference_mode():
cache = ExLlamaV2Cache(model)
ids = torch.randint(0, model.config.vocab_size - 1, (1, model.config.max_seq_len))
print(f" -- Warmup...")
model.forward(ids[:, -1:])
print(f" -- Measuring prompt speed...")
current_len = 128
while True:
time_begin = time.time()
cache.current_seq_len = 0
model.forward(ids[:, :current_len], cache, preprocess_only = True)
torch.cuda.synchronize()
time_end = time.time()
tps = current_len / (time_end - time_begin)
print(f" ** Length {current_len:>5} tokens: {tps:>11.4f} t/s")
current_len_ = current_len
current_len = min(current_len + 128, model.config.max_seq_len)
if current_len == current_len_: break
cache = None
# Test token speed
if args.speed:
with torch.inference_mode():
cache = ExLlamaV2Cache(model)
print(f" -- Measuring token speed...")
ids = tokenizer.encode("X")
model.forward(ids[:, :])
current_idx = ids.shape[-1]
next_stop = 128
while True:
time_begin = time.time()
tokens = next_stop - current_idx
for i in range(tokens):
logits = model.forward(ids[:, -1:], cache)
sample = torch.argmax(logits[0, -1]).cpu().unsqueeze(0).unsqueeze(0)
ids = torch.cat((ids, sample), dim=-1)
time_end = time.time()
tps = tokens / (time_end - time_begin)
print(f" ** Position {current_idx:>5} + {tokens:>3} tokens: {tps:>9.4f} t/s")
current_idx = next_stop
next_stop = min(next_stop + 128, model.config.max_seq_len)
if next_stop == current_idx: break
|