File size: 15,142 Bytes
a04e486 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b 8eddc47 ec0f90b a04e486 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
---
license: apache-2.0
datasets:
- PetraAI/PetraAI
language:
- ar
- en
- ch
- zh
metrics:
- accuracy
- bertscore
- bleu
- chrf
- code_eval
- brier_score
tags:
- chemistry
- biology
- finance
- legal
- music
- code
- art
- climate
- medical
- text-generation-inference
---
### Inference Speed
> The result is generated using [this script](examples/benchmark/generation_speed.py), batch size of input is 1, decode strategy is beam search and enforce the model to generate 512 tokens, speed metric is tokens/s (the larger, the better).
>
> The quantized model is loaded using the setup that can gain the fastest inference speed.
| model | GPU | num_beams | fp16 | gptq-int4 |
|---------------|---------------|-----------|-------|-----------|
| llama-7b | 1xA100-40G | 1 | 18.87 | 25.53 |
| llama-7b | 1xA100-40G | 4 | 68.79 | 91.30 |
| moss-moon 16b | 1xA100-40G | 1 | 12.48 | 15.25 |
| moss-moon 16b | 1xA100-40G | 4 | OOM | 42.67 |
| moss-moon 16b | 2xA100-40G | 1 | 06.83 | 06.78 |
| moss-moon 16b | 2xA100-40G | 4 | 13.10 | 10.80 |
| gpt-j 6b | 1xRTX3060-12G | 1 | OOM | 29.55 |
| gpt-j 6b | 1xRTX3060-12G | 4 | OOM | 47.36 |
### Perplexity
For perplexity comparison, you can turn to [here](https://github.com/qwopqwop200/GPTQ-for-LLaMa#result) and [here](https://github.com/qwopqwop200/GPTQ-for-LLaMa#gptq-vs-bitsandbytes)
## Installation
### Quick Installation
You can install the latest stable release of AutoGPTQ from pip with pre-built wheels compatible with PyTorch 2.0.1:
* For CUDA 11.7: `pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu117/`
* For CUDA 11.8: `pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/`
* For RoCm 5.4.2: `pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/rocm542/`
**Warning:** These wheels are not expected to work on PyTorch nightly. Please install AutoGPTQ from source when using PyTorch nightly.
#### disable cuda extensions
By default, cuda extensions will be installed when `torch` and `cuda` is already installed in your machine, if you don't want to use them, using:
```shell
BUILD_CUDA_EXT=0 pip install auto-gptq
```
And to make sure `autogptq_cuda` is not ever in your virtual environment, run:
```shell
pip uninstall autogptq_cuda -y
```
#### to support triton speedup
To integrate with `triton`, using:
> warning: currently triton only supports linux; 3-bit quantization is not supported when using triton
```shell
pip install auto-gptq[triton]
```
### Install from source
<details>
<summary>click to see details</summary>
Clone the source code:
```shell
git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ
```
Then, install from source:
```shell
pip install .
```
Like quick installation, you can also set `BUILD_CUDA_EXT=0` to disable pytorch extension building.
Use `.[triton]` if you want to integrate with triton and it's available on your operating system.
To install from source for AMD GPUs supporting RoCm, please specify the `ROCM_VERSION` environment variable. The compilation can be speeded up by specifying the `PYTORCH_ROCM_ARCH` variable ([reference](https://github.com/pytorch/pytorch/blob/7b73b1e8a73a1777ebe8d2cd4487eb13da55b3ba/setup.py#L132)), for example `gfx90a` for MI200 series devices. Example:
```
ROCM_VERSION=5.6 pip install .
```
For RoCm systems, the packages `rocsparse-dev`, `hipsparse-dev`, `rocthrust-dev`, `rocblas-dev` and `hipblas-dev` are required to build.
</details>
## Quick Tour
### Quantization and Inference
> warning: this is just a showcase of the usage of basic apis in AutoGPTQ, which uses only one sample to quantize a much small model, quality of quantized model using such little samples may not good.
Below is an example for the simplest use of `auto_gptq` to quantize a model and inference after quantization:
```python
from transformers import AutoTokenizer, TextGenerationPipeline
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
import logging
logging.basicConfig(
format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S"
)
pretrained_model_dir = "facebook/opt-125m"
quantized_model_dir = "opt-125m-4bit"
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
examples = [
tokenizer(
"auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."
)
]
quantize_config = BaseQuantizeConfig(
bits=4, # quantize model to 4-bit
group_size=128, # it is recommended to set the value to 128
desc_act=False, # set to False can significantly speed up inference but the perplexity may slightly bad
)
# load un-quantized model, by default, the model will always be loaded into CPU memory
model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_dir, quantize_config)
# quantize model, the examples should be list of dict whose keys can only be "input_ids" and "attention_mask"
model.quantize(examples)
# save quantized model
model.save_quantized(quantized_model_dir)
# save quantized model using safetensors
model.save_quantized(quantized_model_dir, use_safetensors=True)
# push quantized model to Hugging Face Hub.
# to use use_auth_token=True, Login first via huggingface-cli login.
# or pass explcit token with: use_auth_token="hf_xxxxxxx"
# (uncomment the following three lines to enable this feature)
# repo_id = f"YourUserName/{quantized_model_dir}"
# commit_message = f"AutoGPTQ model for {pretrained_model_dir}: {quantize_config.bits}bits, gr{quantize_config.group_size}, desc_act={quantize_config.desc_act}"
# model.push_to_hub(repo_id, commit_message=commit_message, use_auth_token=True)
# alternatively you can save and push at the same time
# (uncomment the following three lines to enable this feature)
# repo_id = f"YourUserName/{quantized_model_dir}"
# commit_message = f"AutoGPTQ model for {pretrained_model_dir}: {quantize_config.bits}bits, gr{quantize_config.group_size}, desc_act={quantize_config.desc_act}"
# model.push_to_hub(repo_id, save_dir=quantized_model_dir, use_safetensors=True, commit_message=commit_message, use_auth_token=True)
# load quantized model to the first GPU
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device="cuda:0")
# download quantized model from Hugging Face Hub and load to the first GPU
# model = AutoGPTQForCausalLM.from_quantized(repo_id, device="cuda:0", use_safetensors=True, use_triton=False)
# inference with model.generate
print(tokenizer.decode(model.generate(**tokenizer("auto_gptq is", return_tensors="pt").to(model.device))[0]))
# or you can also use pipeline
pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer)
print(pipeline("auto-gptq is")[0]["generated_text"])
```
For more advanced features of model quantization, please reference to [this script](examples/quantization/quant_with_alpaca.py)
### Customize Model
<details>
<summary>Below is an example to extend `auto_gptq` to support `OPT` model, as you will see, it's very easy:</summary>
```python
from auto_gptq.modeling import BaseGPTQForCausalLM
class OPTGPTQForCausalLM(BaseGPTQForCausalLM):
# chained attribute name of transformer layer block
layers_block_name = "model.decoder.layers"
# chained attribute names of other nn modules that in the same level as the transformer layer block
outside_layer_modules = [
"model.decoder.embed_tokens", "model.decoder.embed_positions", "model.decoder.project_out",
"model.decoder.project_in", "model.decoder.final_layer_norm"
]
# chained attribute names of linear layers in transformer layer module
# normally, there are four sub lists, for each one the modules in it can be seen as one operation,
# and the order should be the order when they are truly executed, in this case (and usually in most cases),
# they are: attention q_k_v projection, attention output projection, MLP project input, MLP project output
inside_layer_modules = [
["self_attn.k_proj", "self_attn.v_proj", "self_attn.q_proj"],
["self_attn.out_proj"],
["fc1"],
["fc2"]
]
```
After this, you can use `OPTGPTQForCausalLM.from_pretrained` and other methods as shown in Basic.
</details>
### Evaluation on Downstream Tasks
You can use tasks defined in `auto_gptq.eval_tasks` to evaluate model's performance on specific down-stream task before and after quantization.
The predefined tasks support all causal-language-models implemented in [π€ transformers](https://github.com/huggingface/transformers) and in this project.
<details>
<summary>Below is an example to evaluate `EleutherAI/gpt-j-6b` on sequence-classification task using `cardiffnlp/tweet_sentiment_multilingual` dataset:</summary>
```python
from functools import partial
import datasets
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from auto_gptq.eval_tasks import SequenceClassificationTask
MODEL = "EleutherAI/gpt-j-6b"
DATASET = "cardiffnlp/tweet_sentiment_multilingual"
TEMPLATE = "Question:What's the sentiment of the given text? Choices are {labels}.\nText: {text}\nAnswer:"
ID2LABEL = {
0: "negative",
1: "neutral",
2: "positive"
}
LABELS = list(ID2LABEL.values())
def ds_refactor_fn(samples):
text_data = samples["text"]
label_data = samples["label"]
new_samples = {"prompt": [], "label": []}
for text, label in zip(text_data, label_data):
prompt = TEMPLATE.format(labels=LABELS, text=text)
new_samples["prompt"].append(prompt)
new_samples["label"].append(ID2LABEL[label])
return new_samples
# model = AutoModelForCausalLM.from_pretrained(MODEL).eval().half().to("cuda:0")
model = AutoGPTQForCausalLM.from_pretrained(MODEL, BaseQuantizeConfig())
tokenizer = AutoTokenizer.from_pretrained(MODEL)
task = SequenceClassificationTask(
model=model,
tokenizer=tokenizer,
classes=LABELS,
data_name_or_path=DATASET,
prompt_col_name="prompt",
label_col_name="label",
**{
"num_samples": 1000, # how many samples will be sampled to evaluation
"sample_max_len": 1024, # max tokens for each sample
"block_max_len": 2048, # max tokens for each data block
# function to load dataset, one must only accept data_name_or_path as input
# and return datasets.Dataset
"load_fn": partial(datasets.load_dataset, name="english"),
# function to preprocess dataset, which is used for datasets.Dataset.map,
# must return Dict[str, list] with only two keys: [prompt_col_name, label_col_name]
"preprocess_fn": ds_refactor_fn,
# truncate label when sample's length exceed sample_max_len
"truncate_prompt": False
}
)
# note that max_new_tokens will be automatically specified internally based on given classes
print(task.run())
# self-consistency
print(
task.run(
generation_config=GenerationConfig(
num_beams=3,
num_return_sequences=3,
do_sample=True
)
)
)
```
</details>
## Learn More
[tutorials](docs/tutorial) provide step-by-step guidance to integrate `auto_gptq` with your own project and some best practice principles.
[examples](examples/README.md) provide plenty of example scripts to use `auto_gptq` in different ways.
## Supported Models
> you can use `model.config.model_type` to compare with the table below to check whether the model you use is supported by `auto_gptq`.
>
> for example, model_type of `WizardLM`, `vicuna` and `gpt4all` are all `llama`, hence they are all supported by `auto_gptq`.
| model type | quantization | inference | peft-lora | peft-ada-lora | peft-adaption_prompt |
|------------------------------------|--------------|-----------|-----------|---------------|-------------------------------------------------------------------------------------------------|
| bloom | β
| β
| β
| β
| |
| gpt2 | β
| β
| β
| β
| |
| gpt_neox | β
| β
| β
| β
| β
[requires this peft branch](https://github.com/PanQiWei/peft/tree/multi_modal_adaption_prompt) |
| gptj | β
| β
| β
| β
| β
[requires this peft branch](https://github.com/PanQiWei/peft/tree/multi_modal_adaption_prompt) |
| llama | β
| β
| β
| β
| β
|
| moss | β
| β
| β
| β
| β
[requires this peft branch](https://github.com/PanQiWei/peft/tree/multi_modal_adaption_prompt) |
| opt | β
| β
| β
| β
| |
| gpt_bigcode | β
| β
| β
| β
| |
| codegen | β
| β
| β
| β
| |
| falcon(RefinedWebModel/RefinedWeb) | β
| β
| β
| β
| |
## Supported Evaluation Tasks
Currently, `auto_gptq` supports: `LanguageModelingTask`, `SequenceClassificationTask` and `TextSummarizationTask`; more Tasks will come soon!
## Running tests
Tests can be run with:
```
pytest tests/ -s
```
## Acknowledgement
- Specially thanks **Elias Frantar**, **Saleh Ashkboos**, **Torsten Hoefler** and **Dan Alistarh** for proposing **GPTQ** algorithm and open source the [code](https://github.com/IST-DASLab/gptq).
- Specially thanks **qwopqwop200**, for code in this project that relevant to quantization are mainly referenced from [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa/tree/cuda).
[![Star History Chart](https://api.star-history.com/svg?repos=PanQiwei/AutoGPTQ&type=Date)](https://star-history.com/#PanQiWei/AutoGPTQ&Date) |