File size: 3,353 Bytes
c8f1415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
078bad7
c8f1415
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
license: mit
---

# Midjourney API

**Model Page:** [Midjourney API](https://piapi.ai/midjourney-api)

This model card illustartes the steps to use Midjourney API's endpoint.
You can also check out other model cards:

- [Faceswap API](https://huggingface.co/PiAPI/Faceswap-API)
- [Suno API](https://huggingface.co/PiAPI/Suno-API)
- [Dream Machine API](https://huggingface.co/PiAPI/Dream-Machine-API)

**Model Information**

Renowned for its exceptional text-to-image generative AI capabilities, Midjourney is a preferred tool among graphic designers, photographers, and creatives aiming to explore AI-driven artistry. Despite the absence of an official API from Midjourney, PiAPI has introduced the unofficial Midjourney API, empowering developers to incorporate this cutting-edge text-to-image model into their AI applications.



## Usage Steps

Below we share the code snippets on how to use Midjourney API's upscale endpoint.
- The programming language is Python
- The origin task ID should be the task ID of the fetched imagine endpoint

**Create an upscale task ID**

<pre><code class="language-python">
  <span class="hljs-keyword">import</span> http.client
  
  conn = http.client.HTTPSConnection(<span class="hljs-string">"api.piapi.ai"</span>)
  
  payload = <span class="hljs-string">"{\n  \"origin_task_id\": \"9c6796dd*********1e7dfef5203b\",\n  \"index\": \"1\",\n  \"webhook_endpoint\": \"\",\n  \"webhook_secret\": \"\"\n}"</span>
  
  headers = {
      <span class="hljs-built_in">'X-API-Key': "{{x-api-key}}"</span>,             //Insert your API Key here
      <span class="hljs-built_in">'Content-Type': "application/json"</span>,
      <span class="hljs-built_in">'Accept': "application/json"</span>
  }
  
  conn.request("POST", "/mj/v2/upscale", payload, headers)
  
  res = conn.getresponse()
  data = res.read()
  
  <span class="hljs-keyword">print</span>(data.decode("utf-8"))
</code></pre>



**Retrieve the task ID**

<pre><code class="language-python">
  {
      <span class="hljs-built_in">"code"</span>: 200,
      <span class="hljs-built_in">"data"</span>: {
          <span class="hljs-built_in">"task_id"</span>: :3be7e0b0****************d1a725da0b1d"      //Record the taskID provided in your response terminal
      },
      <span class="hljs-built_in">"message"</span>: "success"
  }
</code></pre>



**Insert the upscale task ID into the fetch endpoint**

<pre><code class="language-python">
  <span class="hljs-keyword">import</span> http.client
  
  conn = http.client.HTTPSConnection(<span class="hljs-string">"api.piapi.ai"</span>)
  
  payload = <span class="hljs-string">"{\n  \"task_id\": \"3be7e0b0****************d1a725da0b1d\"\n}"</span> /Replace the task ID with your task ID
  
  headers = {
      <span class="hljs-built_in">'Content-Type': "application/json"</span>,
      <span class="hljs-built_in">'Accept': "application/json"</span>
  }
  
  conn.request("POST", "/mj/v2/fetch", payload, headers)
  
  res = conn.getresponse()
  data = res.read()
  
  <span class="hljs-keyword">print</span>(data.decode("utf-8"))
</code></pre>



**For fetch endpoint responses** - Refer to our [documentation](https://piapi.ai/docs/midjourney-api/upscale) for more detailed information.



<br>



## Contact us

Contact us at <a href="mailto:contact@piapi.ai">contact@piapi.ai</a> for any inquires.

<br>