--- license: mit --- # Midjourney API **Model Page:** [Midjourney API](https://piapi.ai/midjourney-api) This model card illustartes the steps to use Midjourney API's endpoint. You can also check out other model cards: - [Faceswap API](https://huggingface.co/PiAPI/Faceswap-API) - [Suno API](https://huggingface.co/PiAPI/Suno-API) - [Dream Machine API](https://huggingface.co/PiAPI/Dream-Machine-API) **Model Information** Renowned for its exceptional text-to-image generative AI capabilities, Midjourney is a preferred tool among graphic designers, photographers, and creatives aiming to explore AI-driven artistry. Despite the absence of an official API from Midjourney, PiAPI has introduced the unofficial Midjourney API, empowering developers to incorporate this cutting-edge text-to-image model into their AI applications. ## Usage Steps Below we share the code snippets on how to use Midjourney API's upscale endpoint. - The programming language is Python - The origin task ID should be the task ID of the fetched imagine endpoint **Create an upscale task ID**
import http.client
conn = http.client.HTTPSConnection("api.piapi.ai")
payload = "{\n \"origin_task_id\": \"9c6796dd*********1e7dfef5203b\",\n \"index\": \"1\",\n \"webhook_endpoint\": \"\",\n \"webhook_secret\": \"\"\n}"
headers = {
'X-API-Key': "{{x-api-key}}", //Insert your API Key here
'Content-Type': "application/json",
'Accept': "application/json"
}
conn.request("POST", "/mj/v2/upscale", payload, headers)
res = conn.getresponse()
data = res.read()
print(data.decode("utf-8"))
**Retrieve the task ID**
{
"code": 200,
"data": {
"task_id": :3be7e0b0****************d1a725da0b1d" //Record the taskID provided in your response terminal
},
"message": "success"
}
**Insert the upscale task ID into the fetch endpoint**
import http.client
conn = http.client.HTTPSConnection("api.piapi.ai")
payload = "{\n \"task_id\": \"3be7e0b0****************d1a725da0b1d\"\n}" /Replace the task ID with your task ID
headers = {
'Content-Type': "application/json",
'Accept': "application/json"
}
conn.request("POST", "/mj/v2/fetch", payload, headers)
res = conn.getresponse()
data = res.read()
print(data.decode("utf-8"))
**For fetch endpoint responses** - Refer to our [documentation](https://piapi.ai/docs/midjourney-api/upscale) for more detailed information.