File size: 2,521 Bytes
5a5afa1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
datasets:
- eur-lex-sum
metrics:
- rouge
model-index:
- name: T5_small_eurlexsum
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: eur-lex-sum
type: eur-lex-sum
config: french
split: test
args: french
metrics:
- name: Rouge1
type: rouge
value: 0.2288
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# T5_small_eurlexsum
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the eur-lex-sum dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9360
- Rouge1: 0.2288
- Rouge2: 0.1816
- Rougel: 0.2157
- Rougelsum: 0.2158
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 71 | 1.4482 | 0.1743 | 0.0982 | 0.1509 | 0.1511 | 19.0 |
| No log | 2.0 | 142 | 1.1661 | 0.193 | 0.1257 | 0.1731 | 0.1734 | 19.0 |
| No log | 3.0 | 213 | 1.0651 | 0.2072 | 0.1483 | 0.1892 | 0.1896 | 19.0 |
| No log | 4.0 | 284 | 1.0053 | 0.2167 | 0.1638 | 0.2017 | 0.2019 | 19.0 |
| No log | 5.0 | 355 | 0.9706 | 0.222 | 0.1731 | 0.2082 | 0.2079 | 19.0 |
| No log | 6.0 | 426 | 0.9510 | 0.2253 | 0.1771 | 0.2114 | 0.2114 | 19.0 |
| No log | 7.0 | 497 | 0.9393 | 0.2263 | 0.1785 | 0.2134 | 0.2133 | 19.0 |
| 1.4549 | 8.0 | 568 | 0.9360 | 0.2288 | 0.1816 | 0.2157 | 0.2158 | 19.0 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|