File size: 5,589 Bytes
f426a23 a8dac49 bea9116 f426a23 8dc46b6 f426a23 40d7d42 f426a23 de9b3e2 f426a23 887fb43 f426a23 887fb43 f426a23 6efc277 f426a23 f0ab63d f426a23 aaf6904 f426a23 89ce696 f0ab63d f426a23 e83b789 f426a23 620a28f d1711aa 620a28f 205f843 620a28f 205f843 620a28f 205f843 a537d08 2c6c4a6 bea9116 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
---
license: apache-2.0
datasets:
- PipableAI/pip-txt-to-sql-spider-bird-dataset
language:
- en
metrics:
- accuracy
tags:
- sql
- code
- text2sql
- instruction_tuned
- basemodel
- jax
- pytorch
- text-generation-inference
library_name: transformers
pipeline_tag: text-generation
widget:
- text: >-
<schema>CREATE TABLE system(JobID: String,GID: String, UID: String,
Start:Time(yyyy/mm/dd), End: Time,ElapsedRaw: Time, CPUTimeRAW: Time,NCPUS:
Number,NNodes: Number, NodeList: List, State:String, Timelimit:
Time);</schema><question>Get UID and job id for Jobs that started on Jan 20
, 2023 ended on feb 14 2023 and has job id 20</question><sql>
example_title: example
---
# pipSQL-1.3b
[pipableAi](https://www.linkedin.com/company/pipable.ai/about/)
[colab_notebook](https://colab.research.google.com/drive/1insSxvc3jjAXe0zmdIjmbG3ttb5mpRgQ?usp=sharing)
## What have we built?
A 1.3 bn SQL model that outperforms most SQL expert models and chatgpt on popular benchmarks.
This is a distilled model built on the deepseek base model.
Please refer to https://huggingface.co/PipableAI/pip-library-etl-1.3b for our state of the art model.
## How we built it?
We used softmax cross entropy and a modified form of policy grad along with Q loss, optimized in an EM set up.
Loss behaviour in the set up mentioned above -
![image/png](https://cdn-uploads.huggingface.co/production/uploads/658d8095a2a6a6e0da8bb8a6/I80Ru1r4thoYrLagIWALa.png)
## Benchmarking :
For benchmarking purposes we are using Semantic Evaluation for Text-to-SQL with
Distilled Test Suites, an officially accepted evaluation framework for Spider, SParC, and CoSQL which was proposed by a research team of Yale and Berkeley.
The benchmark contains 2200 test data points
Here is the link to run the evaluation:
[Test Suite SQL Eval](https://github.com/taoyds/test-suite-sql-eval)
|model|easy|medium|hard|extra|
|-----|----|------|----|-----|
|sqlcoder-7b-2|72.0|58.0|40.6|37.3|
|pipSQL-1.3b|78.5|57.5|42.1|28.3|
|pipSQL-7b|63.0|40.0|30.2|25.0|
|sqlcoder-7b|60.6|48.2|28.3|20.4|
|gpt-3.5|58.8|44.7|31.0|28.4|
We have also benchmarked it on defog eval.
It contains 200 test data points handpicked by defog team.
Here is the link to it:
[Defog SQL-Eval](https://github.com/defog-ai/sql-eval)
These are the results -
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d32c6b921678fdc9de3302/fFeLSEYBNpQk_JWjFsF5M.png)
## License
The model is open source under apache 2.0. License
## Usage
### Installation
```bash
pip install transformers
```
### Prompt
```python
prompt = f"""<schema>{schema}</schema>
<question>{question}</question>
<sql>"""
```
### PyTorch
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda"
model = AutoModelForCausalLM.from_pretrained("PipableAI/pip-sql-1.3b")
tokenizer = AutoTokenizer.from_pretrained("PipableAI/pip-sql-1.3b")
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=200)
print(tokenizer.decode(outputs[0], skip_special_tokens=True).split('<sql>')[1].split('</sql>')[0])
```
### Flax
```python
from transformers import FlaxAutoModelForCausalLM, AutoTokenizer
device = "cuda"
model = FlaxAutoModelForCausalLM.from_pretrained("PipableAI/pip-sql-1.3b",from_pt=True)
tokenizer = AutoTokenizer.from_pretrained("PipableAI/pip-sql-1.3b")
inputs = tokenizer(text, return_tensors="jax")
outputs = model.generate(**inputs, max_new_tokens=200)
print(tokenizer.decode(outputs[0], skip_special_tokens=True).split('<sql>')[1].split('</sql>')[0])
```
## Examples
### Schema
```sql
CREATE TABLE Products (
product_id number,
parent_product_id number,
product_name text,
product_price number,
product_color text,
product_size text,
product_description text);
CREATE TABLE Customers (
customer_id number,
gender_code text,
customer_first_name text,
customer_middle_initial text,
customer_last_name text,
email_address text,
login_name text,
login_password text,
phone_number text,
address_line_1 text,
town_city text,
county text,
country text);
CREATE TABLE Customer_Payment_Methods (
customer_id number,
payment_method_code text);
CREATE TABLE Invoices (
invoice_number number,
invoice_status_code text,
invoice_date time);
CREATE TABLE Orders (
order_id number,
customer_id number,
order_status_code text,
date_order_placed time);
CREATE TABLE Order_Items (
order_item_id number,
product_id number,
order_id number,
order_item_status_code text);
CREATE TABLE Shipments (
shipment_id number,
order_id number,
invoice_number number,
shipment_tracking_number text,
shipment_date time);
CREATE TABLE Shipment_Items (
shipment_id number,
order_item_id number);
```
### Questions
What are the email address, town and county of the customers who are of the least common gender?
```sql
SELECT email_address , town_city , county FROM customers GROUP BY gender_code ORDER BY count(*) ASC LIMIT 1
```
What are the product price and the product size of the products whose price is above average?
```sql
SELECT product_price , product_size FROM products WHERE product_price > (SELECT avg(product_price) FROM products)
```
Which customers did not make any orders? List the first name, middle initial and last name.
```sql
SELECT T1.customer_first_name , T1.customer_middle_initial , T1.customer_last_name FROM Customers AS T1 WHERE T1.customer_id NOT IN (SELECT T2.customer_id FROM Orders AS T2)
```
### Team
Avi Kothari, Pratham Gupta, Ritvik Aryan Kalra, Rohan Bhatial, Soham Acharya |