gonzalez-agirre
commited on
Commit
·
52ba14c
1
Parent(s):
6714a6c
Update README.md
Browse files
README.md
CHANGED
@@ -1,32 +1,48 @@
|
|
1 |
---
|
|
|
2 |
language:
|
|
|
3 |
- es
|
|
|
4 |
license: apache-2.0
|
|
|
5 |
tags:
|
6 |
-
|
7 |
-
-
|
|
|
|
|
|
|
8 |
datasets:
|
9 |
-
|
10 |
-
-
|
|
|
|
|
|
|
11 |
metrics:
|
12 |
-
|
|
|
|
|
13 |
widget:
|
14 |
- text: "La ley fue <mask> finalmente."
|
15 |
- text: "El Tribunal <mask> desestimó el recurso de amparo."
|
16 |
- text: "Hay base legal dentro del marco <mask> actual."
|
17 |
|
18 |
---
|
19 |
-
|
|
|
20 |
|
21 |
## Table of contents
|
22 |
<details>
|
23 |
<summary>Click to expand</summary>
|
24 |
|
|
|
25 |
- [Model description](#model-description)
|
26 |
-
- [Intended uses and limitations](#intended-
|
27 |
- [How to use](#how-to-use)
|
28 |
- [Limitations and bias](#limitations-and-bias)
|
29 |
- [Training](#training)
|
|
|
|
|
30 |
- [Evaluation](#evaluation)
|
31 |
- [Additional information](#additional-information)
|
32 |
- [Author](#author)
|
@@ -34,25 +50,97 @@ widget:
|
|
34 |
- [Copyright](#copyright)
|
35 |
- [Licensing information](#licensing-information)
|
36 |
- [Funding](#funding)
|
37 |
-
- [
|
38 |
- [Disclaimer](#disclaimer)
|
39 |
|
40 |
</details>
|
41 |
|
42 |
-
## Model description
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
## Intended uses and limitations
|
|
|
|
|
|
|
46 |
|
47 |
## How to use
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
## Limitations and bias
|
50 |
At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
|
51 |
|
52 |
-
## Training
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
## Evaluation
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
## Additional information
|
57 |
|
58 |
### Author
|
|
|
1 |
---
|
2 |
+
|
3 |
language:
|
4 |
+
|
5 |
- es
|
6 |
+
|
7 |
license: apache-2.0
|
8 |
+
|
9 |
tags:
|
10 |
+
|
11 |
+
- "legal"
|
12 |
+
|
13 |
+
- "spanish"
|
14 |
+
|
15 |
datasets:
|
16 |
+
|
17 |
+
- "legal_ES"
|
18 |
+
|
19 |
+
- "temu_legal"
|
20 |
+
|
21 |
metrics:
|
22 |
+
|
23 |
+
- "ppl"
|
24 |
+
|
25 |
widget:
|
26 |
- text: "La ley fue <mask> finalmente."
|
27 |
- text: "El Tribunal <mask> desestimó el recurso de amparo."
|
28 |
- text: "Hay base legal dentro del marco <mask> actual."
|
29 |
|
30 |
---
|
31 |
+
|
32 |
+
# RoBERTa base trained with Spanish Legal Domain Corpora
|
33 |
|
34 |
## Table of contents
|
35 |
<details>
|
36 |
<summary>Click to expand</summary>
|
37 |
|
38 |
+
- [Overview](#overview)
|
39 |
- [Model description](#model-description)
|
40 |
+
- [Intended uses and limitations](#intended-uses-and-limitations)
|
41 |
- [How to use](#how-to-use)
|
42 |
- [Limitations and bias](#limitations-and-bias)
|
43 |
- [Training](#training)
|
44 |
+
- [Training data](#training-data)
|
45 |
+
- [Training procedure](#training-procedure)
|
46 |
- [Evaluation](#evaluation)
|
47 |
- [Additional information](#additional-information)
|
48 |
- [Author](#author)
|
|
|
50 |
- [Copyright](#copyright)
|
51 |
- [Licensing information](#licensing-information)
|
52 |
- [Funding](#funding)
|
53 |
+
- [Citation Information](#citation-information)
|
54 |
- [Disclaimer](#disclaimer)
|
55 |
|
56 |
</details>
|
57 |
|
|
|
58 |
|
59 |
+
## Overview
|
60 |
+
- **Architecture:** roberta-base
|
61 |
+
- **Language:** Spanish
|
62 |
+
- **Task:** fill-mask
|
63 |
+
- **Data:** Legal
|
64 |
+
|
65 |
+
## Model description
|
66 |
+
The **RoBERTalex** is a transformer-based masked language model for the Spanish language. It is based on the [RoBERTa](https://arxiv.org/abs/1907.11692) base model and has been pre-trained using a large [Spanish Legal Domain Corpora](https://zenodo.org/record/5495529), with a total of 8.9GB of text.
|
67 |
|
68 |
## Intended uses and limitations
|
69 |
+
The **RoBERTalex** model is ready-to-use only for masked language modeling to perform the Fill Mask task (try the inference API or read the next section).
|
70 |
+
However, it is intended to be fine-tuned on non-generative downstream tasks such as Question Answering, Text Classification, or Named Entity Recognition.
|
71 |
+
You can use the raw model for fill mask or fine-tune it to a downstream task.
|
72 |
|
73 |
## How to use
|
74 |
+
Here is how to use this model:
|
75 |
+
|
76 |
+
```python
|
77 |
+
>>> from transformers import pipeline
|
78 |
+
>>> from pprint import pprint
|
79 |
+
>>> unmasker = pipeline('fill-mask', model='PlanTL-GOB-ES/RoBERTalex')
|
80 |
+
>>> pprint(unmasker("La ley fue <mask> finalmente."))
|
81 |
+
[{'score': 0.21217258274555206,
|
82 |
+
'sequence': ' La ley fue modificada finalmente.',
|
83 |
+
'token': 5781,
|
84 |
+
'token_str': ' modificada'},
|
85 |
+
{'score': 0.20414969325065613,
|
86 |
+
'sequence': ' La ley fue derogada finalmente.',
|
87 |
+
'token': 15951,
|
88 |
+
'token_str': ' derogada'},
|
89 |
+
{'score': 0.19272951781749725,
|
90 |
+
'sequence': ' La ley fue aprobada finalmente.',
|
91 |
+
'token': 5534,
|
92 |
+
'token_str': ' aprobada'},
|
93 |
+
{'score': 0.061143241822719574,
|
94 |
+
'sequence': ' La ley fue revisada finalmente.',
|
95 |
+
'token': 14192,
|
96 |
+
'token_str': ' revisada'},
|
97 |
+
{'score': 0.041809432208538055,
|
98 |
+
'sequence': ' La ley fue aplicada finalmente.',
|
99 |
+
'token': 12208,
|
100 |
+
'token_str': ' aplicada'}]
|
101 |
+
|
102 |
+
```
|
103 |
+
|
104 |
+
Here is how to use this model to get the features of a given text in PyTorch:
|
105 |
+
|
106 |
+
```python
|
107 |
+
>>> from transformers import RobertaTokenizer, RobertaModel
|
108 |
+
>>> tokenizer = RobertaTokenizer.from_pretrained('PlanTL-GOB-ES/RoBERTalex')
|
109 |
+
>>> model = RobertaModel.from_pretrained('PlanTL-GOB-ES/RoBERTalex')
|
110 |
+
>>> text = "Gracias a los datos legales se ha podido desarrollar este modelo del lenguaje."
|
111 |
+
>>> encoded_input = tokenizer(text, return_tensors='pt')
|
112 |
+
>>> output = model(**encoded_input)
|
113 |
+
>>> print(output.last_hidden_state.shape)
|
114 |
+
torch.Size([1, 16, 768])
|
115 |
+
```
|
116 |
|
117 |
## Limitations and bias
|
118 |
At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
|
119 |
|
120 |
+
## Training data
|
121 |
+
The [Spanish Legal Domain Corpora](https://zenodo.org/record/5495529) corpora comprise multiple digital resources and it has a total of 8.9GB of textual data. Part of it has been obtained
|
122 |
+
from [previous work](https://aclanthology.org/2020.lt4gov-1.6/). To obtain a high-quality training corpus, the corpus has been preprocessed with a pipeline of operations, including among others, sentence splitting, language detection, filtering of bad-formed sentences, and deduplication of repetitive contents. During the process, document boundaries are kept.
|
123 |
+
|
124 |
+
### Training procedure
|
125 |
+
The training corpus has been tokenized using a byte version of Byte-Pair Encoding (BPE) used in the original [RoBERTA](https://arxiv.org/abs/1907.11692) model with a vocabulary size of 50,262 tokens.
|
126 |
+
|
127 |
+
The **RoBERTalex** pre-training consists of a masked language model training, that follows the approach employed for the RoBERTa base. The model was trained until convergence with 2 computing nodes, each one with 4 NVIDIA V100 GPUs of 16GB VRAM.
|
128 |
|
129 |
## Evaluation
|
130 |
|
131 |
+
Due to the lack of domain-specific evaluation data, the model was evaluated on general domain tasks, where it obtains reasonable performance. We fine-tuned the model in the following task:
|
132 |
+
|
133 |
+
| Dataset | Metric | **RoBERtalex** |
|
134 |
+
|--------------|----------|------------|
|
135 |
+
| UD-POS | F1 | 0.9871 |
|
136 |
+
| CoNLL-NERC | F1 | 0.8323 |
|
137 |
+
| CAPITEL-POS | F1 | 0.9788|
|
138 |
+
| CAPITEL-NERC | F1 | 0.8394 |
|
139 |
+
| STS | Combined | 0.7374 |
|
140 |
+
| MLDoc | Accuracy | 0.9417 |
|
141 |
+
| PAWS-X | F1 | 0.7304 |
|
142 |
+
| XNLI | Accuracy | 0.7337 |
|
143 |
+
|
144 |
## Additional information
|
145 |
|
146 |
### Author
|