--- tags: - merge - mergekit - lazymergekit - mlabonne/AlphaMonarch-7B - mistralai/Mistral-7B-Instruct-v0.2 - Kukedlc/NeuralMaths-Experiment-7b base_model: - mlabonne/AlphaMonarch-7B - mistralai/Mistral-7B-Instruct-v0.2 - Kukedlc/NeuralMaths-Experiment-7b --- # Neural-AlphaMistral-7B Neural-AlphaMistral-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) * [Kukedlc/NeuralMaths-Experiment-7b](https://huggingface.co/Kukedlc/NeuralMaths-Experiment-7b) ## 🧩 Configuration ```yaml models: - model: mlabonne/AlphaMonarch-7B parameters: density: 0.8 weight: 0.33 - model: mistralai/Mistral-7B-Instruct-v0.2 parameters: density: 0.8 weight: 0.33 - model: Kukedlc/NeuralMaths-Experiment-7b parameters: density: 0.7 weight: 0.33 merge_method: ties base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Ppoyaa/Neural-AlphaMistral-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```