File size: 8,489 Bytes
9d5a838 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
---
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- DFKI-SLT/few-nerd
metrics:
- precision
- recall
- f1
widget:
- text: The Hebrew Union College libraries in Cincinnati and Los Angeles, the Library
of Congress in Washington, D.C ., the Jewish Theological Seminary in New York
City, and the Harvard University Library (which received donations of Deinard's
texts from Lucius Nathan Littauer, housed in Widener and Houghton libraries) also
have large collections of Deinard works.
- text: Abu Abd Allah Muhammad al-Idrisi (1099–1165 or 1166), the Moroccan Muslim
geographer, cartographer, Egyptologist and traveller who lived in Sicily at the
court of King Roger II, mentioned this island, naming it جزيرة مليطمة ("jazīrat
Malīṭma", "the island of Malitma ") on page 583 of his book "Nuzhat al-mushtaq
fi ihtiraq ghal afaq", otherwise known as The Book of Roger, considered a geographic
encyclopaedia of the medieval world.
- text: The font is also used in the logo of the American rock band Greta Van Fleet,
in the logo for Netflix show "Stranger Things ", and in the album art for rapper
Logic's album "Supermarket ".
- text: Caretaker manager George Goss led them on a run in the FA Cup, defeating Liverpool
in round 4, to reach the semi-final at Stamford Bridge, where they were defeated
2–0 by Sheffield United on 28 March 1925.
- text: In 1991, the National Science Foundation (NSF), which manages the U.S . Antarctic
Program (US AP), honoured his memory by dedicating a state-of-the-art laboratory
complex in his name, the Albert P. Crary Science and Engineering Center (CSEC)
located in McMurdo Station.
pipeline_tag: token-classification
model-index:
- name: SpanMarker
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
name: Unknown
type: DFKI-SLT/few-nerd
split: test
metrics:
- type: f1
value: 0.7710703953712633
name: F1
- type: precision
value: 0.778881745567894
name: Precision
- type: recall
value: 0.7634141684170327
name: Recall
---
# SpanMarker
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [DFKI-SLT/few-nerd](https://huggingface.co/datasets/DFKI-SLT/few-nerd) dataset that can be used for Named Entity Recognition.
## Model Details
### Model Description
- **Model Type:** SpanMarker
<!-- - **Encoder:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [DFKI-SLT/few-nerd](https://huggingface.co/datasets/DFKI-SLT/few-nerd)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
### Model Labels
| Label | Examples |
|:-------------|:-------------------------------------------------------------------------------|
| art | "The Seven Year Itch", "Time", "Imelda de ' Lambertazzi" |
| building | "Henry Ford Museum", "Sheremetyevo International Airport", "Boston Garden" |
| event | "French Revolution", "Iranian Constitutional Revolution", "Russian Revolution" |
| location | "Croatian", "the Republic of Croatia", "Mediterranean Basin" |
| organization | "IAEA", "Church 's Chicken", "Texas Chicken" |
| other | "Amphiphysin", "N-terminal lipid", "BAR" |
| person | "Edmund Payne", "Ellaline Terriss", "Hicks" |
| product | "100EX", "Phantom", "Corvettes - GT1 C6R" |
## Evaluation
### Metrics
| Label | Precision | Recall | F1 |
|:-------------|:----------|:-------|:-------|
| **all** | 0.7789 | 0.7634 | 0.7711 |
| art | 0.7610 | 0.7256 | 0.7429 |
| building | 0.6316 | 0.6857 | 0.6575 |
| event | 0.6304 | 0.5346 | 0.5786 |
| location | 0.8114 | 0.8554 | 0.8328 |
| organization | 0.7370 | 0.68 | 0.7074 |
| other | 0.7407 | 0.6085 | 0.6682 |
| person | 0.8611 | 0.9035 | 0.8818 |
| product | 0.704 | 0.5966 | 0.6459 |
## Uses
### Direct Use for Inference
```python
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Run inference
entities = model.predict("Caretaker manager George Goss led them on a run in the FA Cup, defeating Liverpool in round 4, to reach the semi-final at Stamford Bridge, where they were defeated 2–0 by Sheffield United on 28 March 1925.")
```
### Downstream Use
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
```python
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")
```
</details>
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:----------------------|:----|:--------|:----|
| Sentence length | 1 | 24.4956 | 163 |
| Entities per sentence | 0 | 2.5439 | 35 |
### Training Hyperparameters
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training Results
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 0.1629 | 200 | 0.0335 | 0.6884 | 0.6223 | 0.6537 | 0.9062 |
| 0.3259 | 400 | 0.0238 | 0.7412 | 0.7193 | 0.7301 | 0.9242 |
| 0.4888 | 600 | 0.0220 | 0.7628 | 0.7378 | 0.7501 | 0.9325 |
| 0.6517 | 800 | 0.0211 | 0.7614 | 0.7677 | 0.7645 | 0.9376 |
| 0.8147 | 1000 | 0.0197 | 0.7839 | 0.7596 | 0.7716 | 0.9384 |
| 0.9776 | 1200 | 0.0194 | 0.7803 | 0.7633 | 0.7717 | 0.9393 |
### Framework Versions
- Python: 3.10.12
- SpanMarker: 1.5.0
- Transformers: 4.37.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.17.1
- Tokenizers: 0.15.2
## Citation
### BibTeX
```
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |