jonathanjordan21
commited on
Commit
•
3dc443c
1
Parent(s):
7e435ad
Update README.md
Browse files
README.md
CHANGED
@@ -6,6 +6,8 @@ tags:
|
|
6 |
---
|
7 |
---
|
8 |
|
|
|
|
|
9 |
import contextlib
|
10 |
import os
|
11 |
from matplotlib import pyplot as plt
|
@@ -28,7 +30,11 @@ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
28 |
tokenizer = AutoTokenizer.from_pretrained("janpase97/codeformer-pretrained")
|
29 |
|
30 |
model = AutoModelForSeq2SeqLM.from_pretrained("janpase97/codeformer-pretrained")
|
|
|
31 |
|
|
|
|
|
|
|
32 |
def check_graphics_api(target_app_name):
|
33 |
graphics_api = None
|
34 |
|
@@ -43,9 +49,11 @@ def check_graphics_api(target_app_name):
|
|
43 |
elif "vulkan" in output:
|
44 |
graphics_api = "VULKAN"
|
45 |
return graphics_api
|
46 |
-
|
47 |
|
48 |
# Get the target application's process object
|
|
|
|
|
49 |
def get_target_app_process(target_app_name):
|
50 |
return next(
|
51 |
(
|
@@ -55,8 +63,11 @@ def get_target_app_process(target_app_name):
|
|
55 |
),
|
56 |
None,
|
57 |
)
|
|
|
58 |
|
59 |
# Attach the AI to the application's process by PID
|
|
|
|
|
60 |
def attach_ai_to_app_pid(target_app_process):
|
61 |
if target_app_process is not None:
|
62 |
print(f"AI is attached to the application's process with PID: {target_app_process.pid}")
|
@@ -64,20 +75,29 @@ def attach_ai_to_app_pid(target_app_process):
|
|
64 |
else:
|
65 |
print("Could not find the target application's process to attach the AI.")
|
66 |
return False
|
|
|
67 |
|
68 |
# Check if the targeted application is running
|
|
|
|
|
69 |
def is_target_app_running(target_app_name):
|
70 |
return any(
|
71 |
process.info['name'] == target_app_name
|
72 |
for process in psutil.process_iter(['name'])
|
73 |
)
|
|
|
74 |
|
75 |
# Create the directory if it doesn't exist
|
|
|
|
|
76 |
directory = r"G:\Epic Games\GTAV\GTA5_AI\trained_models"
|
77 |
if not os.path.exists(directory):
|
78 |
os.makedirs(directory)
|
|
|
79 |
|
80 |
# Define the neural network model
|
|
|
|
|
81 |
class NanoCircuit(nn.Module):
|
82 |
def __init__(self):
|
83 |
super(NanoCircuit, self).__init__()
|
@@ -89,22 +109,33 @@ class NanoCircuit(nn.Module):
|
|
89 |
x = torch.relu(self.fc1(x))
|
90 |
x = self.fc2(x)
|
91 |
return x
|
|
|
92 |
|
93 |
# Set the device to GPU if available
|
94 |
-
|
|
|
|
|
|
|
95 |
|
96 |
# Load the MNIST dataset
|
|
|
|
|
97 |
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
|
98 |
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
|
99 |
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
|
100 |
-
|
101 |
|
102 |
# Initialize the model and move it to the GPU
|
|
|
|
|
103 |
model = NanoCircuit().to(device)
|
104 |
criterion = nn.CrossEntropyLoss()
|
105 |
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
|
|
|
106 |
|
107 |
# Train the model on the GPU with a data cap
|
|
|
|
|
108 |
def train_with_data_cap(model, data_loader, criterion, optimizer, device, data_cap_gb):
|
109 |
data_processed = 0
|
110 |
data_cap_bytes = data_cap_gb * (1024 ** 3)
|
@@ -135,15 +166,19 @@ def train_with_data_cap(model, data_loader, criterion, optimizer, device, data_c
|
|
135 |
print(f"Data processed: {data_processed / (1024 ** 3):.2f} GB")
|
136 |
|
137 |
return model
|
138 |
-
|
139 |
|
140 |
# Save the updated model as a .onnx file
|
|
|
|
|
141 |
def save_model(model, filepath):
|
142 |
dummy_input = torch.randn(1, 1, 28, 28).to(device)
|
143 |
torch.onnx.export(model, dummy_input, filepath, input_names=['input'], output_names=['output'], opset_version=11)
|
144 |
-
|
145 |
|
146 |
# Train the model with a 1 GB data cap
|
|
|
|
|
147 |
trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, device, data_cap_gb=50)
|
148 |
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
149 |
|
@@ -208,8 +243,11 @@ def train_with_data_cap(model, data_loader, criterion, optimizer, device, data_c
|
|
208 |
print(f"Data processed: {data_processed / (1024 ** 3):.2f} GB")
|
209 |
|
210 |
return model
|
|
|
211 |
|
212 |
# Train the model with a 10 GB data cap
|
|
|
|
|
213 |
trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, os.device_encoding, data_cap_gb=10)
|
214 |
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
215 |
|
@@ -325,9 +363,11 @@ while True:
|
|
325 |
if not is_target_app_running(target_app_name):
|
326 |
print("Target application not detected in 5 seconds. Shutting down the AI.")
|
327 |
break
|
|
|
328 |
|
329 |
-
|
330 |
-
|
|
|
331 |
np.random.seed(0)
|
332 |
original_data = np.random.normal(0, 1, 100)
|
333 |
trained_data = np.random.normal(0.5, 1, 100)
|
@@ -368,4 +408,5 @@ while True:
|
|
368 |
|
369 |
if not is_target_app_running(target_app_name):
|
370 |
print("Target application not detected in 5 seconds. Shutting down the AI.")
|
371 |
-
break
|
|
|
|
6 |
---
|
7 |
---
|
8 |
|
9 |
+
# Initialize Model and Tokenizer
|
10 |
+
```python
|
11 |
import contextlib
|
12 |
import os
|
13 |
from matplotlib import pyplot as plt
|
|
|
30 |
tokenizer = AutoTokenizer.from_pretrained("janpase97/codeformer-pretrained")
|
31 |
|
32 |
model = AutoModelForSeq2SeqLM.from_pretrained("janpase97/codeformer-pretrained")
|
33 |
+
```
|
34 |
|
35 |
+
# Check for the graphics API
|
36 |
+
|
37 |
+
```python
|
38 |
def check_graphics_api(target_app_name):
|
39 |
graphics_api = None
|
40 |
|
|
|
49 |
elif "vulkan" in output:
|
50 |
graphics_api = "VULKAN"
|
51 |
return graphics_api
|
52 |
+
```
|
53 |
|
54 |
# Get the target application's process object
|
55 |
+
|
56 |
+
```python
|
57 |
def get_target_app_process(target_app_name):
|
58 |
return next(
|
59 |
(
|
|
|
63 |
),
|
64 |
None,
|
65 |
)
|
66 |
+
```
|
67 |
|
68 |
# Attach the AI to the application's process by PID
|
69 |
+
|
70 |
+
```python
|
71 |
def attach_ai_to_app_pid(target_app_process):
|
72 |
if target_app_process is not None:
|
73 |
print(f"AI is attached to the application's process with PID: {target_app_process.pid}")
|
|
|
75 |
else:
|
76 |
print("Could not find the target application's process to attach the AI.")
|
77 |
return False
|
78 |
+
```
|
79 |
|
80 |
# Check if the targeted application is running
|
81 |
+
|
82 |
+
```python
|
83 |
def is_target_app_running(target_app_name):
|
84 |
return any(
|
85 |
process.info['name'] == target_app_name
|
86 |
for process in psutil.process_iter(['name'])
|
87 |
)
|
88 |
+
```
|
89 |
|
90 |
# Create the directory if it doesn't exist
|
91 |
+
|
92 |
+
```python
|
93 |
directory = r"G:\Epic Games\GTAV\GTA5_AI\trained_models"
|
94 |
if not os.path.exists(directory):
|
95 |
os.makedirs(directory)
|
96 |
+
```
|
97 |
|
98 |
# Define the neural network model
|
99 |
+
|
100 |
+
```python
|
101 |
class NanoCircuit(nn.Module):
|
102 |
def __init__(self):
|
103 |
super(NanoCircuit, self).__init__()
|
|
|
109 |
x = torch.relu(self.fc1(x))
|
110 |
x = self.fc2(x)
|
111 |
return x
|
112 |
+
```
|
113 |
|
114 |
# Set the device to GPU if available
|
115 |
+
|
116 |
+
```python
|
117 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "CPU")
|
118 |
+
```
|
119 |
|
120 |
# Load the MNIST dataset
|
121 |
+
|
122 |
+
```python
|
123 |
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
|
124 |
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
|
125 |
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
|
126 |
+
```
|
127 |
|
128 |
# Initialize the model and move it to the GPU
|
129 |
+
|
130 |
+
```python
|
131 |
model = NanoCircuit().to(device)
|
132 |
criterion = nn.CrossEntropyLoss()
|
133 |
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
|
134 |
+
```
|
135 |
|
136 |
# Train the model on the GPU with a data cap
|
137 |
+
|
138 |
+
```python
|
139 |
def train_with_data_cap(model, data_loader, criterion, optimizer, device, data_cap_gb):
|
140 |
data_processed = 0
|
141 |
data_cap_bytes = data_cap_gb * (1024 ** 3)
|
|
|
166 |
print(f"Data processed: {data_processed / (1024 ** 3):.2f} GB")
|
167 |
|
168 |
return model
|
169 |
+
```
|
170 |
|
171 |
# Save the updated model as a .onnx file
|
172 |
+
|
173 |
+
```python
|
174 |
def save_model(model, filepath):
|
175 |
dummy_input = torch.randn(1, 1, 28, 28).to(device)
|
176 |
torch.onnx.export(model, dummy_input, filepath, input_names=['input'], output_names=['output'], opset_version=11)
|
177 |
+
```
|
178 |
|
179 |
# Train the model with a 1 GB data cap
|
180 |
+
|
181 |
+
```python
|
182 |
trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, device, data_cap_gb=50)
|
183 |
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
184 |
|
|
|
243 |
print(f"Data processed: {data_processed / (1024 ** 3):.2f} GB")
|
244 |
|
245 |
return model
|
246 |
+
```
|
247 |
|
248 |
# Train the model with a 10 GB data cap
|
249 |
+
|
250 |
+
```python
|
251 |
trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, os.device_encoding, data_cap_gb=10)
|
252 |
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
253 |
|
|
|
363 |
if not is_target_app_running(target_app_name):
|
364 |
print("Target application not detected in 5 seconds. Shutting down the AI.")
|
365 |
break
|
366 |
+
```
|
367 |
|
368 |
+
# Generate some random data for the boxplots
|
369 |
+
|
370 |
+
```python
|
371 |
np.random.seed(0)
|
372 |
original_data = np.random.normal(0, 1, 100)
|
373 |
trained_data = np.random.normal(0.5, 1, 100)
|
|
|
408 |
|
409 |
if not is_target_app_running(target_app_name):
|
410 |
print("Target application not detected in 5 seconds. Shutting down the AI.")
|
411 |
+
break
|
412 |
+
```
|