sharpenb commited on
Commit
62f1dda
1 Parent(s): d615e3e

46e40689d82f2c128a11355cfac93a7a0167c934e28355b81ad7f7d39c127e7b

Browse files
README.md CHANGED
@@ -36,7 +36,7 @@ metrics:
36
  ![image info](./plots.png)
37
 
38
  **Frequently Asked Questions**
39
- - ***How does the compression work?*** The model is compressed by combining quantization, jit, cuda graphs.
40
  - ***How does the model quality change?*** The quality of the model output might slightly vary compared to the base model.
41
  - ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
42
  - ***What is the model format?*** We used a custom Pruna model format based on pickle to make models compatible with the compression methods. We provide a tutorial to run models in dockers in the documentation [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) if needed.
 
36
  ![image info](./plots.png)
37
 
38
  **Frequently Asked Questions**
39
+ - ***How does the compression work?*** The model is compressed by combining quantization, xformers, jit, cuda graphs, triton.
40
  - ***How does the model quality change?*** The quality of the model output might slightly vary compared to the base model.
41
  - ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
42
  - ***What is the model format?*** We used a custom Pruna model format based on pickle to make models compatible with the compression methods. We provide a tutorial to run models in dockers in the documentation [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) if needed.
model/optimized_model.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bf6e8fda970e4cd50314855fd3ae02c52e6669bb9025435d573e7b29b2dff027
3
  size 31263183
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8b442c12fd6514612f0cde0bcfa64f9914cdedb36fa7692d7e670319d1cb296
3
  size 31263183
model/smash_config.json CHANGED
@@ -14,7 +14,7 @@
14
  "controlnet": "None",
15
  "unet_dim": 4,
16
  "device": "cuda",
17
- "cache_dir": "/ceph/hdd/staff/charpent/.cache/modelsz1_zc4v4",
18
  "batch_size": 1,
19
  "model_name": "convnext_nano.d1h_in1k",
20
  "max_batch_size": 1,
 
14
  "controlnet": "None",
15
  "unet_dim": 4,
16
  "device": "cuda",
17
+ "cache_dir": "/ceph/hdd/staff/charpent/.cache/models5qo8ihtl",
18
  "batch_size": 1,
19
  "model_name": "convnext_nano.d1h_in1k",
20
  "max_batch_size": 1,
plots.png CHANGED