--- license: apache-2.0 language: - en tags: - mamba-hf --- # Mamba-3B mamba-hf Mamba Models with hf_integration. For modeling codes: [**mamba-hf**](https://github.com/LegallyCoder/mamba-hf) # Usage: ```python from transformers import AutoModelForCausalLM , AutoTokenizer model = AutoModelForCausalLM.from_pretrained('Q-bert/Mamba-3B', trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained('Q-bert/Mamba-3B') text = "Hi" input_ids = tokenizer.encode(text, return_tensors="pt") output = model.generate(input_ids, max_length=20, num_beams=5, no_repeat_ngram_size=2) generated_text = tokenizer.decode(output[0], skip_special_tokens=True) print(generated_text) ``` > Hi, I'm looking for a new job. I've been working at a company for about a year now. # For Training: ```python from transformers import Trainer ,TrainingArguments import torch import os class MambaTrainer(Trainer): def compute_loss(self, model, inputs, return_outputs=False): input_ids = inputs.pop("input_ids") lm_logits = model(input_ids)[0] labels = input_ids.to(lm_logits.device) shift_logits = lm_logits[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = torch.nn.CrossEntropyLoss() lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1)) return lm_loss ``` You must use this class for training. And fp16 must be **False**. # Credits: https://huggingface.co/state-spaces Special thanks to Albert Gu and Tri Dao for their articles. (https://arxiv.org/abs/2312.00752)