--- base_model: EpistemeAI/Athena-codegemma-2-9b language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - gemma2 - trl pipeline_tag: text-generation --- ![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ) # QuantFactory/Athena-codegemma-2-9b-v1-GGUF This is quantized version of [EpistemeAI/Athena-codegemma-2-9b-v1](https://huggingface.co/EpistemeAI/Athena-codegemma-2-9b-v1) created using llama.cpp # Original Model Card # How to use This repository contains Athena-codegemma-2-9b-v1, for use with transformers and with the original llama codebase. Use with transformers Starting with transformers >= 4.43.0 onward, you can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function. Make sure to update your transformers installation via pip install --upgrade transformers. ## Best use to test or prompt: You need to prepare prompt in **alpaca** format to generate properly: ```python def format_test(x): if x['input']: formatted_text = f"""Below is an instruction that describes a task. \ Write a response that appropriately completes the request. ### Instruction: {x['instruction']} ### Input: {x['input']} ### Response: """ else: formatted_text = f"""Below is an instruction that describes a task. \ Write a response that appropriately completes the request. ### Instruction: {x['instruction']} ### Response: """ return formatted_text # using code_instructions_122k_alpaca dataset Prompt = format_test(data[155]) print(Prompt) ``` - huggingface transformers method: ```python from transformers import TextStreamer FastLanguageModel.for_inference(model) # Enable native 2x faster inference inputs = tokenizer( [ Prompt ], return_tensors = "pt").to("cuda") text_streamer = TextStreamer(tokenizer) _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 512) ``` - unsloth method ```python from unsloth import FastLanguageModel model, tokenizer = FastLanguageModel.from_pretrained( model_name = "EpistemeAI/Athena-codegemma-2-9b-v1", # YOUR MODEL YOU USED FOR TRAINING max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, ) FastLanguageModel.for_inference(model) # Enable native 2x faster inference # alpaca_prompt = You MUST copy from above! inputs = tokenizer( [ alpaca_prompt.format( "Create a function to calculate the sum of a sequence of integers.", # instruction "", # input "", # output - leave this blank for generation! ) ], return_tensors = "pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True) tokenizer.batch_decode(outputs) ``` -- ### Inputs and outputs * **Input:** Text string, such as a question, a prompt, or a document to be summarized. * **Output:** Generated English-language text in response to the input, such as an answer to a question, or a summary of a document. ### Citation ```none @article{gemma_2024, title={Gemma}, url={https://www.kaggle.com/m/3301}, DOI={10.34740/KAGGLE/M/3301}, publisher={Kaggle}, author={Gemma Team}, year={2024} } ``` # Uploaded model - **Developed by:** EpistemeAI - **License:** apache-2.0 - **Finetuned from model :** EpistemeAI/Athena-codegemma-2-9b This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth)