Text Generation
GGUF
English
Inference Endpoints
File size: 4,414 Bytes
578d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
datasets:
- tiiuae/falcon-refinedweb
- instruction-pretrain/ft-instruction-synthesizer-collection
language:
- en
pipeline_tag: text-generation
base_model: instruction-pretrain/InstructLM-500M
---

# QuantFactory/InstructLM-500M-GGUF
This is quantized version of [instruction-pretrain/InstructLM-500M](https://huggingface.co/instruction-pretrain/InstructLM-500M) created using llama.cpp

# Model Description
## Instruction Pre-Training: Language Models are Supervised Multitask Learners
This repo contains the **general models pre-trained from scratch** in our paper [Instruction Pre-Training: Language Models are Supervised Multitask Learners](https://huggingface.co/papers/2406.14491).

We explore supervised multitask pre-training by proposing ***Instruction Pre-Training***, a framework that scalably augments massive raw corpora with instruction-response pairs to pre-train language models. The instruction-response pairs are generated by an efficient instruction synthesizer built on open-source models. In our experiments, we synthesize 200M instruction-response pairs covering 40+ task categories to verify the effectiveness of *Instruction Pre-Training*. Instruction Pre-Training* outperforms *Vanilla Pre-training* in both general pre-training from scratch and domain-adaptive continual pre-training. **In pre-training from scratch, *Instruction Pre-Training* not only improves pre-trained base models but also benefits more from further instruction tuning.** In continual pre-training, *Instruction Pre-Training* enables Llama3-8B to be comparable to or even outperform Llama3-70B.

<p align='center'>
    <img src="https://cdn-uploads.huggingface.co/production/uploads/66711d2ee12fa6cc5f5dfc89/vRdsFIVQptbNaGiZ18Lih.png" width="400">
</p>

## Resources
**🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗**

- Context-Based Instruction Synthesizer: [instruction-synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer)
- Fine-Tuning Data for the Synthesizer: [ft-instruction-synthesizer-collection](https://huggingface.co/datasets/instruction-pretrain/ft-instruction-synthesizer-collection)
- General Models Pre-Trained from Scratch:
  - [InstructLM-500M](https://huggingface.co/instruction-pretrain/InstructLM-500M)
  - [InstructLM-1.3B](https://huggingface.co/instruction-pretrain/InstructLM-1.3B)
- Domain-Specific Models Pre-Trained from Llama3-8B:
  - [Finance-Llama3-8B](https://huggingface.co/instruction-pretrain/finance-Llama3-8B)
  - [Biomedicine-Llama3-8B](https://huggingface.co/instruction-pretrain/medicine-Llama3-8B)

## General Pre-Training From Scratch
We augment the [RefinedWeb corproa](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) with instruction-response pairs generated by our [context-based instruction synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer) to pre-train general langauge models from scratch.

To evaluate our general base model using the [lm-evaluation-harness framework](https://github.com/EleutherAI/lm-evaluation-harness)

1. Setup dependencies:
```bash
git clone https://github.com/EleutherAI/lm-evaluation-harness
cd lm-evaluation-harness
pip install -e .
```

2. Evalaute:
```bash
MODEL=instruction-pretrain/InstructLM-500M
add_bos_token=True # this flag is needed because lm-eval-harness set add_bos_token to False by default, but ours require add_bos_token to be True

accelerate launch -m lm_eval --model hf \
    --model_args pretrained=${MODEL},add_bos_token=${add_bos_token},dtype=float16  \
    --gen_kwargs do_sample=False \
    --tasks piqa,hellaswag,winogrande \
    --batch_size auto \
    --num_fewshot 0

accelerate launch -m lm_eval --model hf \
    --model_args pretrained=${MODEL},add_bos_token=${add_bos_token},dtype=float16 \
    --gen_kwargs do_sample=False \
    --tasks social_iqa,ai2_arc,openbookqa,boolq,mmlu \
    --batch_size auto \
    --num_fewshot 5
```

## Model Citation
If you find our work helpful, please cite us:

[AdaptLLM](https://huggingface.co/papers/2309.09530)
```bibtex
@inproceedings{
cheng2024adapting,
title={Adapting Large Language Models via Reading Comprehension},
author={Daixuan Cheng and Shaohan Huang and Furu Wei},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=y886UXPEZ0}
}
```