File size: 4,871 Bytes
b20cc05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
---
license: llama3.1
base_model:
- meta-llama/Llama-3.1-8B
datasets:
- nvidia/OpenMathInstruct-2
language:
- en
tags:
- nvidia
- math
---
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
# QuantFactory/OpenMath2-Llama3.1-8B-GGUF
This is quantized version of [nvidia/OpenMath2-Llama3.1-8B](https://huggingface.co/nvidia/OpenMath2-Llama3.1-8B) created using llama.cpp
# Original Model Card
# OpenMath2-Llama3.1-8B
OpenMath2-Llama3.1-8B is obtained by finetuning [Llama3.1-8B-Base](https://huggingface.co/meta-llama/Llama-3.1-8B) with [OpenMathInstruct-2](https://huggingface.co/datasets/nvidia/OpenMathInstruct-2).
The model outperforms [Llama3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on all the popular math benchmarks we evaluate on, especially on [MATH](https://github.com/hendrycks/math) by 15.9%.
<!-- <p align="center">
<img src="scaling_plot.jpg" width="350"><img src="math_level_comp.jpg" width="350">
</p> -->
<style>
.image-container {
display: flex;
justify-content: center;
align-items: center;
gap: 20px;
}
.image-container img {
width: 350px;
height: auto;
}
</style>
<div class="image-container">
<img src="scaling_plot.jpg" title="Performance of Llama-3.1-8B-Instruct as it is trained on increasing proportions of OpenMathInstruct-2">
<img src="math_level_comp.jpg" title="Comparison of OpenMath2-Llama3.1-8B vs. Llama-3.1-8B-Instruct across MATH levels">
</div>
| Model | GSM8K | MATH | AMC 2023 | AIME 2024 | Omni-MATH |
|:---|:---:|:---:|:---:|:---:|:---:|
| Llama3.1-8B-Instruct | 84.5 | 51.9 | 9/40 | 2/30 | 12.7 |
| **OpenMath2-Llama3.1-8B** ([nemo](https://huggingface.co/nvidia/OpenMath2-Llama3.1-8B-nemo) \| [HF](https://huggingface.co/nvidia/OpenMath2-Llama3.1-8B)) | 91.7 | 67.8 | 16/40 | 3/30 | 22.0 |
| + majority@256 | 94.1 | 76.1 | 23/40 | 3/30 | 24.6 |
| Llama3.1-70B-Instruct | 95.8 | 67.9 | 19/40 | 6/30 | 19.0 |
| OpenMath2-Llama3.1-70B ([nemo](https://huggingface.co/nvidia/OpenMath2-Llama3.1-70B-nemo) \| [HF](https://huggingface.co/nvidia/OpenMath2-Llama3.1-70B)) | 94.9 | 71.9 | 20/40 | 4/30 | 23.1 |
| + majority@256 | 96.0 | 79.6 | 24/40 | 6/30 | 27.6 |
The pipeline we used to produce the data and models is fully open-sourced!
- [Code](https://github.com/Kipok/NeMo-Skills)
- [Models](https://huggingface.co/collections/nvidia/openmath-2-66fb142317d86400783d2c7b)
- [Dataset](https://huggingface.co/datasets/nvidia/OpenMathInstruct-2)
See our [paper](https://arxiv.org/abs/2410.01560) to learn more details!
# How to use the models?
Our models are trained with the same "chat format" as Llama3.1-instruct models (same system/user/assistant tokens).
Please note that these models have not been instruction tuned on general data and thus might not provide good answers outside of math domain.
We recommend using [instructions in our repo](https://github.com/Kipok/NeMo-Skills/blob/main/docs/inference.md) to run inference with these models, but here is
an example of how to do it through transformers api:
```python
import transformers
import torch
model_id = "nvidia/OpenMath2-Llama3.1-8B"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{
"role": "user",
"content": "Solve the following math problem. Make sure to put the answer (and only answer) inside \\boxed{}.\n\n" +
"What is the minimum value of $a^2+6a-7$?"},
]
outputs = pipeline(
messages,
max_new_tokens=4096,
)
print(outputs[0]["generated_text"][-1]['content'])
```
# Reproducing our results
We provide [all instructions](https://github.com/Kipok/NeMo-Skills/blob/main/docs/reproducing-results.md) to fully reproduce our results.
## Citation
If you find our work useful, please consider citing us!
```bibtex
@article{toshniwal2024openmath2,
title = {OpenMathInstruct-2: Accelerating AI for Math with Massive Open-Source Instruction Data},
author = {Shubham Toshniwal and Wei Du and Ivan Moshkov and Branislav Kisacanin and Alexan Ayrapetyan and Igor Gitman},
year = {2024},
journal = {arXiv preprint arXiv:2410.01560}
}
```
## Terms of use
By accessing this model, you are agreeing to the LLama 3.1 terms and conditions of the [license](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE), [acceptable use policy](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/USE_POLICY.md) and [Meta’s privacy policy](https://www.facebook.com/privacy/policy/)
|