GGUF
English
nvidia
math
Inference Endpoints
conversational
munish0838 commited on
Commit
b20cc05
1 Parent(s): e62fa3d

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +126 -0
README.md ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ license: llama3.1
5
+ base_model:
6
+ - meta-llama/Llama-3.1-8B
7
+ datasets:
8
+ - nvidia/OpenMathInstruct-2
9
+ language:
10
+ - en
11
+ tags:
12
+ - nvidia
13
+ - math
14
+
15
+ ---
16
+
17
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
18
+
19
+
20
+ # QuantFactory/OpenMath2-Llama3.1-8B-GGUF
21
+ This is quantized version of [nvidia/OpenMath2-Llama3.1-8B](https://huggingface.co/nvidia/OpenMath2-Llama3.1-8B) created using llama.cpp
22
+
23
+ # Original Model Card
24
+
25
+
26
+ # OpenMath2-Llama3.1-8B
27
+
28
+ OpenMath2-Llama3.1-8B is obtained by finetuning [Llama3.1-8B-Base](https://huggingface.co/meta-llama/Llama-3.1-8B) with [OpenMathInstruct-2](https://huggingface.co/datasets/nvidia/OpenMathInstruct-2).
29
+
30
+ The model outperforms [Llama3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on all the popular math benchmarks we evaluate on, especially on [MATH](https://github.com/hendrycks/math) by 15.9%.
31
+
32
+ <!-- <p align="center">
33
+ <img src="scaling_plot.jpg" width="350"><img src="math_level_comp.jpg" width="350">
34
+ </p> -->
35
+
36
+ <style>
37
+ .image-container {
38
+ display: flex;
39
+ justify-content: center;
40
+ align-items: center;
41
+ gap: 20px;
42
+ }
43
+ .image-container img {
44
+ width: 350px;
45
+ height: auto;
46
+ }
47
+ </style>
48
+
49
+ <div class="image-container">
50
+ <img src="scaling_plot.jpg" title="Performance of Llama-3.1-8B-Instruct as it is trained on increasing proportions of OpenMathInstruct-2">
51
+ <img src="math_level_comp.jpg" title="Comparison of OpenMath2-Llama3.1-8B vs. Llama-3.1-8B-Instruct across MATH levels">
52
+ </div>
53
+
54
+ | Model | GSM8K | MATH | AMC 2023 | AIME 2024 | Omni-MATH |
55
+ |:---|:---:|:---:|:---:|:---:|:---:|
56
+ | Llama3.1-8B-Instruct | 84.5 | 51.9 | 9/40 | 2/30 | 12.7 |
57
+ | **OpenMath2-Llama3.1-8B** ([nemo](https://huggingface.co/nvidia/OpenMath2-Llama3.1-8B-nemo) \| [HF](https://huggingface.co/nvidia/OpenMath2-Llama3.1-8B)) | 91.7 | 67.8 | 16/40 | 3/30 | 22.0 |
58
+ | + majority@256 | 94.1 | 76.1 | 23/40 | 3/30 | 24.6 |
59
+ | Llama3.1-70B-Instruct | 95.8 | 67.9 | 19/40 | 6/30 | 19.0 |
60
+ | OpenMath2-Llama3.1-70B ([nemo](https://huggingface.co/nvidia/OpenMath2-Llama3.1-70B-nemo) \| [HF](https://huggingface.co/nvidia/OpenMath2-Llama3.1-70B)) | 94.9 | 71.9 | 20/40 | 4/30 | 23.1 |
61
+ | + majority@256 | 96.0 | 79.6 | 24/40 | 6/30 | 27.6 |
62
+
63
+ The pipeline we used to produce the data and models is fully open-sourced!
64
+
65
+ - [Code](https://github.com/Kipok/NeMo-Skills)
66
+ - [Models](https://huggingface.co/collections/nvidia/openmath-2-66fb142317d86400783d2c7b)
67
+ - [Dataset](https://huggingface.co/datasets/nvidia/OpenMathInstruct-2)
68
+
69
+ See our [paper](https://arxiv.org/abs/2410.01560) to learn more details!
70
+
71
+ # How to use the models?
72
+
73
+ Our models are trained with the same "chat format" as Llama3.1-instruct models (same system/user/assistant tokens).
74
+ Please note that these models have not been instruction tuned on general data and thus might not provide good answers outside of math domain.
75
+
76
+ We recommend using [instructions in our repo](https://github.com/Kipok/NeMo-Skills/blob/main/docs/inference.md) to run inference with these models, but here is
77
+ an example of how to do it through transformers api:
78
+
79
+ ```python
80
+ import transformers
81
+ import torch
82
+
83
+ model_id = "nvidia/OpenMath2-Llama3.1-8B"
84
+
85
+ pipeline = transformers.pipeline(
86
+ "text-generation",
87
+ model=model_id,
88
+ model_kwargs={"torch_dtype": torch.bfloat16},
89
+ device_map="auto",
90
+ )
91
+
92
+ messages = [
93
+ {
94
+ "role": "user",
95
+ "content": "Solve the following math problem. Make sure to put the answer (and only answer) inside \\boxed{}.\n\n" +
96
+ "What is the minimum value of $a^2+6a-7$?"},
97
+ ]
98
+
99
+ outputs = pipeline(
100
+ messages,
101
+ max_new_tokens=4096,
102
+ )
103
+ print(outputs[0]["generated_text"][-1]['content'])
104
+ ```
105
+
106
+ # Reproducing our results
107
+
108
+ We provide [all instructions](https://github.com/Kipok/NeMo-Skills/blob/main/docs/reproducing-results.md) to fully reproduce our results.
109
+
110
+ ## Citation
111
+
112
+ If you find our work useful, please consider citing us!
113
+
114
+ ```bibtex
115
+ @article{toshniwal2024openmath2,
116
+ title = {OpenMathInstruct-2: Accelerating AI for Math with Massive Open-Source Instruction Data},
117
+ author = {Shubham Toshniwal and Wei Du and Ivan Moshkov and Branislav Kisacanin and Alexan Ayrapetyan and Igor Gitman},
118
+ year = {2024},
119
+ journal = {arXiv preprint arXiv:2410.01560}
120
+ }
121
+ ```
122
+
123
+ ## Terms of use
124
+
125
+ By accessing this model, you are agreeing to the LLama 3.1 terms and conditions of the [license](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE), [acceptable use policy](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/USE_POLICY.md) and [Meta’s privacy policy](https://www.facebook.com/privacy/policy/)
126
+