aashish1904 commited on
Commit
fc11989
Β·
verified Β·
1 Parent(s): 05d7e0f

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +239 -0
README.md ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ license: creativeml-openrail-m
5
+ language:
6
+ - en
7
+ - de
8
+ - fr
9
+ - it
10
+ - pt
11
+ - hi
12
+ - es
13
+ - th
14
+ pipeline_tag: text-generation
15
+ tags:
16
+ - triangulum_1b
17
+ - sft
18
+ - chain_of_thought
19
+ - ollama
20
+ - text-generation-inference
21
+ - llama_for_causal_lm
22
+ - reasoning
23
+ - CoT
24
+ library_name: transformers
25
+ metrics:
26
+ - code_eval
27
+ - accuracy
28
+ - competition_math
29
+ - character
30
+
31
+ ---
32
+
33
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
34
+
35
+
36
+ # QuantFactory/Triangulum-1B-GGUF
37
+ This is quantized version of [prithivMLmods/Triangulum-1B](https://huggingface.co/prithivMLmods/Triangulum-1B) created using llama.cpp
38
+
39
+ # Original Model Card
40
+
41
+ ![Triangulum-5b.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/By0OJ1lMvP5ZvVvfEGvz5.png)
42
+
43
+ <pre align="center">
44
+ __ .__ .__
45
+ _/ |_ _______ |__|_____ ____ ____ __ __ | | __ __ _____
46
+ \ __\\_ __ \| |\__ \ / \ / ___\ | | \| | | | \ / \
47
+ | | | | \/| | / __ \_| | \/ /_/ >| | /| |__| | /| Y Y \
48
+ |__| |__| |__|(____ /|___| /\___ / |____/ |____/|____/ |__|_| /
49
+ \/ \//_____/ \/
50
+ </pre>
51
+
52
+ # **Triangulum 1B: Multilingual Large Language Models (LLMs)**
53
+
54
+ Triangulum 1B is a collection of pretrained and instruction-tuned generative models, designed for multilingual applications. These models are trained using synthetic datasets based on long chains of thought, enabling them to perform complex reasoning tasks effectively.
55
+
56
+ # **Key Features & Model Architecture**
57
+
58
+ - **Foundation Model**: Built upon LLaMA's autoregressive language model, leveraging an optimized transformer architecture for enhanced performance.
59
+
60
+ - **Instruction Tuning**: Includes supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align model outputs with human preferences for helpfulness and safety.
61
+
62
+ - **Multilingual Support**: Designed to handle multiple languages, ensuring broad applicability across diverse linguistic contexts.
63
+
64
+ ---
65
+
66
+ - Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
67
+
68
+ # **Training Approach**
69
+
70
+ 1. **Synthetic Datasets**: Utilizes long chain-of-thought synthetic data to enhance reasoning capabilities.
71
+ 2. **Supervised Fine-Tuning (SFT)**: Aligns the model to specific tasks through curated datasets.
72
+ 3. **Reinforcement Learning with Human Feedback (RLHF)**: Ensures the model adheres to human values and safety guidelines through iterative training processes.
73
+
74
+ # **How to use with transformers**
75
+
76
+ Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function.
77
+
78
+ Make sure to update your transformers installation via `pip install --upgrade transformers`.
79
+
80
+ ```python
81
+ import torch
82
+ from transformers import pipeline
83
+
84
+ model_id = "prithivMLmods/Triangulum-1B"
85
+ pipe = pipeline(
86
+ "text-generation",
87
+ model=model_id,
88
+ torch_dtype=torch.bfloat16,
89
+ device_map="auto",
90
+ )
91
+ messages = [
92
+ {"role": "system", "content": "You are the kind and tri-intelligent assistant helping people to understand complex concepts."},
93
+ {"role": "user", "content": "Who are you?"},
94
+ ]
95
+ outputs = pipe(
96
+ messages,
97
+ max_new_tokens=256,
98
+ )
99
+ print(outputs[0]["generated_text"][-1])
100
+ ```
101
+ # **Demo Inference LlamaForCausalLM**
102
+ ```python
103
+ import torch
104
+ from transformers import AutoTokenizer, LlamaForCausalLM
105
+
106
+ # Load tokenizer and model
107
+ tokenizer = AutoTokenizer.from_pretrained('prithivMLmods/Triangulum-1B', trust_remote_code=True)
108
+ model = LlamaForCausalLM.from_pretrained(
109
+ "prithivMLmods/Triangulum-1B",
110
+ torch_dtype=torch.float16,
111
+ device_map="auto",
112
+ load_in_8bit=False,
113
+ load_in_4bit=True,
114
+ use_flash_attention_2=True
115
+ )
116
+
117
+ # Define a list of system and user prompts
118
+ prompts = [
119
+ """<|im_start|>system
120
+ You are the kind and tri-intelligent assistant helping people to understand complex concepts.<|im_end|>
121
+ <|im_start|>user
122
+ Can you explain the concept of eigenvalues and eigenvectors in a simple way?<|im_end|>
123
+ <|im_start|>assistant"""
124
+ ]
125
+
126
+ # Generate responses for each prompt
127
+ for chat in prompts:
128
+ print(f"Prompt:\n{chat}\n")
129
+ input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda")
130
+ generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
131
+ response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
132
+ print(f"Response:\n{response}\n{'-'*80}\n")
133
+ ```
134
+
135
+ # **Key Adjustments**
136
+ 1. **System Prompts:** Each prompt defines a different role or persona for the AI to adopt.
137
+ 2. **User Prompts:** These specify the context or task for the assistant, ranging from teaching to storytelling or career advice.
138
+ 3. **Looping Through Prompts:** Each prompt is processed in a loop to showcase the model's versatility.
139
+
140
+ You can expand the list of prompts to explore a variety of scenarios and responses.
141
+
142
+ # **Use Cases for T5B**
143
+
144
+ - Multilingual content generation
145
+ - Question answering and dialogue systems
146
+ - Text summarization and analysis
147
+ - Translation and localization tasks
148
+
149
+ # **Technical Details**
150
+
151
+ Triangulum 1B employs a state-of-the-art autoregressive architecture inspired by LLaMA. The optimized transformer framework ensures both efficiency and scalability, making it suitable for a variety of use cases.
152
+
153
+ # **How to Run Triangulum 5B on Ollama Locally**
154
+
155
+ ```markdown
156
+ # How to Run Ollama Locally
157
+
158
+ This guide demonstrates the power of using open-source LLMs locally, showcasing examples with different open-source models for various use cases. By the end, you'll be equipped to run any future open-source LLM models with ease.
159
+
160
+ ---
161
+
162
+ ## Example 1: How to Run the Triangulum-1B Model
163
+
164
+ The **Triangulum-10B** model is an open-source LLM known for its capabilities across text-based tasks. We'll interact with it similarly to ChatGPT, but run it locally with support for quants.
165
+
166
+ ### Step 1: Download the Model
167
+
168
+ First, download the **Triangulum-1B-F16.gguf** model using the following command:
169
+
170
+ ```bash
171
+ ollama run triangulum-1b-f16.gguf
172
+ ```
173
+
174
+ ### Step 2: Model Initialization and Download
175
+
176
+ Upon running the command, Ollama will initialize and download the model files. You should see output similar to the following:
177
+
178
+ ```plaintext
179
+ pulling manifest
180
+ pulling 8934d96d3f08... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 3.8 GB
181
+ pulling 8c17c2ebb0ea... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 7.0 KB
182
+ pulling 7c23fb36d801... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 4.8 KB
183
+ pulling 2e0493f67d0c... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 59 B
184
+ pulling fa304d675061... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 91 B
185
+ pulling 42ba7f8a01dd... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 557 B
186
+ verifying sha256 digest
187
+ writing manifest
188
+ removing any unused layers
189
+ success
190
+ >>> Send a message (/? for help)
191
+ ```
192
+
193
+ ### Step 3: Interact with the Model
194
+
195
+ Once the model is ready, you can send a prompt. For example, let's ask:
196
+
197
+ ```plaintext
198
+ >>> What can you do for me?
199
+ ```
200
+
201
+ If you asked the same question, you should receive a response like this:
202
+
203
+ ```plaintext
204
+ As a responsible AI language model, I am here to assist you with any questions or tasks you may have. Here are some examples of things I can help with:
205
+
206
+ 1. Answering questions: I can provide information on a wide range of topics, from science and technology to history and culture.
207
+ 2. Generating ideas: I can help you brainstorm ideas for creative projects, or provide suggestions for solving problems.
208
+ 3. Writing assistance: I can help you with writing tasks such as proofreading, editing, and suggesting alternative words or phrases.
209
+ 4. Translation: I can translate text from one language to another.
210
+ 5. Summarizing content: I can summarize long pieces of text, such as articles or documents, into shorter, more digestible versions.
211
+ 6. Creativity: I can help you generate creative ideas for stories, poems, or other forms of writing.
212
+ 7. Language learning: I can assist you in learning a new language by providing grammar explanations, vocabulary lists, and practice exercises.
213
+ 8. Chatting: I'm here to chat with you and provide a response to any question or topic you'd like to discuss.
214
+
215
+ Please let me know if there is anything specific you would like me to help you with.
216
+ ```
217
+
218
+ ### Step 4: Exit the Program
219
+
220
+ To exit the program, simply type:
221
+
222
+ ```plaintext
223
+ /exit
224
+ ```
225
+
226
+ ## Example 2: Running Multi-Modal Models (Future Use)
227
+
228
+ Ollama supports running multi-modal models where you can send images and ask questions based on them. This section will be updated as more models become available.
229
+
230
+ ## Notes on Using Quantized Models
231
+
232
+ Quantized models like **triangulum-1b-f16.gguf** are optimized for performance on resource-constrained hardware, making it accessible for local inference.
233
+
234
+ 1. Ensure your system has sufficient VRAM or CPU resources.
235
+ 2. Use the `.gguf` model format for compatibility with Ollama.
236
+
237
+ # **Conclusion**
238
+
239
+ Running the **Triangulum-5B** model with Ollama provides a robust way to leverage open-source LLMs locally for diverse use cases. By following these steps, you can explore the capabilities of other open-source models in the future.