GGUF
English
sound language model
Inference Endpoints
conversational
File size: 6,507 Bytes
ba99826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

---

datasets:
- homebrewltd/instruction-speech-whispervq-v2
language:
- en
license: apache-2.0
tags:
- sound language model

---

![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)

# QuantFactory/llama3-s-instruct-v0.2-GGUF
This is quantized version of [homebrewltd/llama3-s-instruct-v0.2](https://huggingface.co/homebrewltd/llama3-s-instruct-v0.2) created using llama.cpp

# Original Model Card


## Model Details

We have developed and released the family [llama3s](https://huggingface.co/collections/homebrew-research/llama3-s-669df2139f0576abc6eb7405). This family is natively understanding audio and text input.

We expand the Semantic tokens experiment with WhisperVQ as a tokenizer for audio files from [homebrewltd/llama3.1-s-base-v0.2](https://huggingface.co/homebrewltd/llama3.1-s-base-v0.2) with nearly 1B tokens from [Instruction Speech WhisperVQ v2](https://huggingface.co/datasets/homebrewltd/instruction-speech-whispervq-v2) dataset.

**Model developers** Homebrew Research.

**Input** Text and sound.

**Output** Text.

**Model Architecture** Llama-3.

**Language(s):** English.

## Intended Use

**Intended Use Cases** This family is primarily intended for research applications. This version aims to further improve the LLM on sound understanding capabilities.

**Out-of-scope** The use of llama3-s in any manner that violates applicable laws or regulations is strictly prohibited.

## How to Get Started with the Model

Try this model using [Google Colab Notebook](https://colab.research.google.com/drive/18IiwN0AzBZaox5o0iidXqWD1xKq11XbZ?usp=sharing).

First, we need to convert the audio file to sound tokens

```python
device = "cuda" if torch.cuda.is_available() else "cpu"
if not os.path.exists("whisper-vq-stoks-medium-en+pl-fixed.model"):
    hf_hub_download(
        repo_id="jan-hq/WhisperVQ",
        filename="whisper-vq-stoks-medium-en+pl-fixed.model",
        local_dir=".",
    )
vq_model = RQBottleneckTransformer.load_model(
        "whisper-vq-stoks-medium-en+pl-fixed.model"
    ).to(device)
def audio_to_sound_tokens(audio_path, target_bandwidth=1.5, device=device):
    vq_model.ensure_whisper(device)

    wav, sr = torchaudio.load(audio_path)
    if sr != 16000:
        wav = torchaudio.functional.resample(wav, sr, 16000)
    with torch.no_grad():
        codes = vq_model.encode_audio(wav.to(device))
        codes = codes[0].cpu().tolist()

    result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
    return f'<|sound_start|>{result}<|sound_end|>'

def audio_to_sound_tokens_transcript(audio_path, target_bandwidth=1.5, device=device):
    vq_model.ensure_whisper(device)

    wav, sr = torchaudio.load(audio_path)
    if sr != 16000:
        wav = torchaudio.functional.resample(wav, sr, 16000)
    with torch.no_grad():
        codes = vq_model.encode_audio(wav.to(device))
        codes = codes[0].cpu().tolist()

    result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
    return f'<|reserved_special_token_69|><|sound_start|>{result}<|sound_end|>'
```

Then, we can inference the model the same as any other LLM.

```python
def setup_pipeline(model_path, use_4bit=False, use_8bit=False):
    tokenizer = AutoTokenizer.from_pretrained(model_path)

    model_kwargs = {"device_map": "auto"}

    if use_4bit:
        model_kwargs["quantization_config"] = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.bfloat16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
        )
    elif use_8bit:
        model_kwargs["quantization_config"] = BitsAndBytesConfig(
            load_in_8bit=True,
            bnb_8bit_compute_dtype=torch.bfloat16,
            bnb_8bit_use_double_quant=True,
        )
    else:
        model_kwargs["torch_dtype"] = torch.bfloat16

    model = AutoModelForCausalLM.from_pretrained(model_path, **model_kwargs)

    return pipeline("text-generation", model=model, tokenizer=tokenizer)

def generate_text(pipe, messages, max_new_tokens=64, temperature=0.0, do_sample=False):
    generation_args = {
        "max_new_tokens": max_new_tokens,
        "return_full_text": False,
        "temperature": temperature,
        "do_sample": do_sample,
    }

    output = pipe(messages, **generation_args)
    return output[0]['generated_text']

# Usage
llm_path = "homebrewltd/llama3.1-s-instruct-v0.2"
pipe = setup_pipeline(llm_path, use_8bit=True)
```

## Training process
**Training Metrics Image**: Below is a snapshot of the training loss curve visualized.

![training_](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/pQ8y9GoSvtv42MgkKRDt0.png)

### Hardware

**GPU Configuration**: Cluster of 8x NVIDIA H100-SXM-80GB.
**GPU Usage**:
  - **Continual Training**: 6 hours.

### Training Arguments

We utilize [torchtune](https://github.com/pytorch/torchtune) library for the latest FSDP2 training code implementation. 

| Parameter                  | Continual Training      | 
|----------------------------|-------------------------|
| **Epoch**                  | 1                       | 
| **Global batch size**      | 128                     | 
| **Learning Rate**          | 0.5e-4                  | 
| **Learning Scheduler**     | Cosine with warmup      | 
| **Optimizer**              | Adam torch fused        | 
| **Warmup Ratio**           | 0.01                    | 
| **Weight Decay**           | 0.005                   |
| **Max Sequence Length**    | 512                     |


## Examples

1. Good example:

<details>
<summary>Click to toggle Example 1</summary>

```

```
</details>

<details>
<summary>Click to toggle Example 2</summary>

```

```
</details>


2. Misunderstanding example:

<details>
<summary>Click to toggle Example 3</summary>
  
```

```
</details>

3. Off-tracked example:

<details>
<summary>Click to toggle Example 4</summary>

```

```
</details>


## Citation Information

**BibTeX:**

```
@article{Llama3-S: Sound Instruction Language Model 2024,
  title={Llama3-S},
  author={Homebrew Research},
  year=2024,
  month=August},
  url={https://huggingface.co/homebrewltd/llama3.1-s-2024-08-20}
```

## Acknowledgement

- **[WhisperSpeech](https://github.com/collabora/WhisperSpeech)**

- **[Meta-Llama-3.1-8B-Instruct ](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)**