--- license: mit tags: - nlp - math language: - en pipeline_tag: text-generation base_model: microsoft/rho-math-1b-interpreter-v0.1 --- # QuantFactory/rho-math-1b-interpreter-v0.1-GGUF This is quantized version of [microsoft/rho-math-1b-interpreter-v0.1](https://huggingface.co/microsoft/rho-math-1b-interpreter-v0.1) created using llama.cpp # Model Description

Rho-1: Not All Tokens Are What You Need

[📜 Arxiv][💬 HF Paper][🤗 Models][🐱 GitHub]


Figure 1: Rho-1 is pre-trained with Selective Language Modeling (SLM). SLM improves average few-shot accuracy on GSM8k and MATH by over 16%, achieving the baseline performance 5-10x faster.

## 🔥 News - [2024/04/12] 🔥🔥🔥 Rho-Math-v0.1 models released at 🤗 HuggingFace! - [Rho-Math-1B](https://huggingface.co/microsoft/rho-math-1b-v0.1) and [Rho-Math-7B](https://huggingface.co/microsoft/rho-math-7b-v0.1) achieve 15.6% and 31.0% few-shot accuracy on MATH dataset, respectively — matching DeepSeekMath with only 3\% of the pretraining tokens. - [Rho-Math-1B-Interpreter](https://huggingface.co/microsoft/rho-math-1b-interpreter-v0.1) is the first 1B LLM that achieves over 40% accuracy on MATH. - [Rho-Math-7B-Interpreter](https://huggingface.co/microsoft/rho-math-7b-interpreter-v0.1) achieves 52% on MATH dataset, using only 69k samples for fine-tuning. - [2024/04/11] Rho-1 paper and repo released. ## 💡 Introduction Rho-1 base models employ Selective Language Modeling (SLM) for pretraining, which selectively trains on clean and useful tokens that aligned with the desired distribution. ### Selective Lanugage Modeling (SLM)


Figure 2: Upper: Even an extensively filtered pretraining corpus contains token-level noise. Left: Previous Causal Language Modeling (CLM) trains on all tokens. Right: Our proposed Selective Language Modeling (SLM) selectively applies loss on those useful and clean tokens.


Figure 3: The pipeline of Selective Language Modeling. SLM optimizes language model performance by concentrating on valuable, clean tokens during pre-training. It involves three steps: (Step 1) Initially, train a reference model on high-quality data. (Step 2) Then, score each token's loss in a corpus using the reference model. (Step 3) Finally, train the language model selectively on tokens that show higher excess loss compared to the reference loss.

### Evaluation Results Base models (Few-shot CoT): | **Model** | **Size** | **Data** | **Uniq. Token** | **Train Token** | **GSM8K** | **MATH** | **MMLU STEM** | **SAT** | |:-----------------:|:--------:|:--------:|:---------------:|:---------------:|:---------:|:--------:|:-------------:|:--------:| | 1-2B Base Models | | | | | | | | | | Qwen1.5 | 1.8B | - | - | - | 36.1 | 6.8 | 31.3 | 40.6 | | Gemma | 2.0B | - | - | - | 18.8 | 11.4 | **34.4** | 50.0 | | DeepSeekMath | 1.3B | - | 120B | 150B | 23.8 | 13.6 | 33.1 | **56.3** | | [Rho-Math-1B-v0.1](https://huggingface.co/microsoft/rho-math-1b-v0.1) | 1.1B | OWM | 14B | 30B | **36.2** | **15.6** | 23.3 | 28.1 | | >= 7B Base Models | | | | | | | | | | Mistral | 7B | | - | - | 41.2 | 11.6 | 49.5 | 59.4 | | Minerva | 540B | - | 39B | 26B | 58.8 | 33.6 | **63.9** | - | | LLemma | 34B | PPile | 55B | 50B | 54.2 | 23.0 | 54.7 | 68.8 | | InternLM2-Math | 20B | - | 31B | 125B | 65.4 | 30.0 | 53.1 | 71.9 | | DeepSeekMath | 7B | - | 120B | 500B | 64.1 | **34.2** | 56.4 | **84.4** | | [Rho-Math-7B-v0.1](https://huggingface.co/microsoft/rho-math-7b-v0.1) | 7B | OWM | 14B | 10.5B | **66.9** | 31.0 | 54.6 | **84.4** | [Tool-integrated reasoning](https://github.com/microsoft/ToRA) (Code Interpreter): | **Model** | **Size** | **SFT Data** | **GSM8k** | **MATH** | **SVAMP** | **ASDiv** | **MAWPS** | **TabMWP** | **GSM-Hard** | **AVG** | |------------------------------|----------|--------------|-----------|----------|-----------|-----------|-----------|------------|--------------|----------| | gpt4-early (pal) | - | - | 94.2 | 51.8 | 94.8 | 92.6 | 97.7 | 95.9 | 77.6 | 86.4 | | gpt-4-turbo-2024-04-09 (cot) | - | - | - | 73.4 | - | - | - | - | - | | Open-Source Small Models | | | | | | | | | | | MAmmoTH | 70B | MI-260k | 76.9 | 41.8 | 82.4 | - | - | - | - | - | | ToRA | 7B | ToRA-69k | 68.8 | 40.1 | 68.2 | 73.9 | 88.8 | 42.4 | 54.6 | 62.4 | | ToRA | 70B | ToRA-69k | 84.3 | 49.7 | **82.7** | 86.8 | 93.8 | 74.0 | **67.2** | **76.9** | | DeepSeekMath | 7B | ToRA-69k | 79.8 | **52.0** | 80.1 | **87.1** | 93.8 | **85.8** | 63.1 | 77.4 | | [Rho-Math-1B-Interpreter-v0.1](https://huggingface.co/microsoft/rho-math-1b-interpreter-v0.1) | 1B | ToRA-69k | 59.4 | 40.6 | 60.7 | 74.2 | 88.6 | 26.7 | 48.1 | 56.9 | | [Rho-Math-7B-Interpreter-v0.1](https://huggingface.co/microsoft/rho-math-7b-interpreter-v0.1) | 7B | ToRA-69k | 81.3 | **51.8** | 80.8 | 85.5 | **94.5** | 70.1 | 63.1 | 75.3 | ## 🚀 Quick Start ### Evaluation ```sh git clone git@github.com:microsoft/rho.git cd rho-1/math-evaluation-harness ``` Base model few-shot evaluation: ```sh bash scripts/run_eval.sh cot microsoft/rho-math-7b-v0.1 ``` SFT model (code-interpreter) evaluation: ```sh bash scripts/run_eval.sh tora microsoft/rho-math-7b-interpreter-v0.1 ``` Our reproduced outputs are provided in `rho-1/outputs.zip`.