Qwen
/

Qwen-7B-Chat / cache_autogptq_cuda_kernel_256.cu
yangapku's picture
update kernels
df4593d
#define _CRT_SECURE_NO_WARNINGS
#include <torch/all.h>
#include <torch/python.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <stdint.h>
#if (defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 700) || defined(USE_ROCM)
// adapted from https://github.com/PanQiWei/AutoGPTQ/blob/main/autogptq_extension/cuda_256/autogptq_cuda_kernel_256.cu
__device__ __forceinline__ void atomicAdd(c10::Half* address, c10::Half val) {
unsigned int *address_as_ui = reinterpret_cast<unsigned int *>(reinterpret_cast<char *>(address) - (reinterpret_cast<size_t>(address) & 2));
unsigned int old = *address_as_ui;
unsigned int assumed;
do {
assumed = old;
unsigned short hsum = reinterpret_cast<size_t>(address) & 2 ? (old >> 16) : (old & 0xffff);
hsum += val;
old = reinterpret_cast<size_t>(address) & 2
? (old & 0xffff) | (hsum << 16)
: (old & 0xffff0000) | hsum;
old = atomicCAS(address_as_ui, assumed, old);
// Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)
} while (assumed != old);
}
__device__ __forceinline__ void atomicAdd(__half* address, c10::Half val) {
unsigned int * address_as_ui = (unsigned int *) ((char *)address - ((size_t)address & 2));
unsigned int old = *address_as_ui;
unsigned int assumed;
do {
assumed = old;
__half_raw hsum;
hsum.x = (size_t)address & 2 ? (old >> 16) : (old & 0xffff);
half tmpres = __hadd(hsum, val);
hsum = __half_raw(tmpres);
old = (size_t)address & 2 ? (old & 0xffff) | (hsum.x << 16) : (old & 0xffff0000) | hsum.x;
old = atomicCAS(address_as_ui, assumed, old);
} while (assumed != old);
}
#endif
template <typename scalar_t>
__global__ void VecQuant8MatMulKernel(
const scalar_t* __restrict__ vec,
const int* __restrict__ mat,
scalar_t* __restrict__ mul,
const scalar_t* __restrict__ scales,
const int* __restrict__ zeros,
const int* __restrict__ g_idx,
int batch,
int vec_height,
int height,
int width,
int zero_width
);
template <typename scalar_t>
__global__ void VecQuant8BatchMatMulColumnCompressionKernel(
const scalar_t* __restrict__ vec,
const int* __restrict__ mat,
scalar_t* __restrict__ mul,
const scalar_t* __restrict__ scales,
const int* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int height,
int width
);
template <typename scalar_t>
__global__ void VecQuant4BatchMatMulColumnCompressionKernel(
const scalar_t* __restrict__ vec,
const int* __restrict__ mat,
scalar_t* __restrict__ mul,
const scalar_t* __restrict__ scales,
const int* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int height,
int width
);
template <typename scalar_t>
__global__ void VecQuant8BatchMatMulKernel(
const scalar_t* __restrict__ vec,
const int* __restrict__ mat,
scalar_t* __restrict__ mul,
const scalar_t* __restrict__ scales,
const int* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int vec_height,
int height,
int width,
int zero_width
);
template <typename scalar_t>
__global__ void VecQuant4BatchMatMulKernel(
const scalar_t* __restrict__ vec,
const int* __restrict__ mat,
scalar_t* __restrict__ mul,
const scalar_t* __restrict__ scales,
const int* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int vec_height,
int height,
int width,
int zero_width
);
template <typename scalar_t>
__global__ void VecQuant8BatchMatMulKernel_old(
const scalar_t* __restrict__ vec,
const uint8_t* __restrict__ mat,
scalar_t* __restrict__ mul,
const scalar_t* __restrict__ scales,
const scalar_t* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int vec_height,
int height,
int width,
int zero_width
);
__global__ void VecQuant8BatchMatMulKernel_faster(
const half* __restrict__ vec,
const uint8_t* __restrict__ mat,
half* __restrict__ mul,
const half* __restrict__ scales,
const half* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int vec_height,
int height,
int width,
int zero_width
);
__global__ void VecQuant8BatchMatMulKernel_faster_old(
const half* __restrict__ vec,
const uint8_t* __restrict__ mat,
half* __restrict__ mul,
const half* __restrict__ scales,
const half* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int vec_height,
int height,
int width
);
template <typename scalar_t>
__global__ void VecQuant4BatchMatMulKernel_old(
const scalar_t* __restrict__ vec,
const uint8_t* __restrict__ mat,
scalar_t* __restrict__ mul,
const scalar_t* __restrict__ scales,
const scalar_t* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int vec_height,
int height,
int width,
int zero_width
);
template <typename scalar_t>
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_old(
const scalar_t* __restrict__ vec,
const uint8_t* __restrict__ mat,
scalar_t* __restrict__ mul,
const scalar_t* __restrict__ scales,
const scalar_t* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int height,
int width
);
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster(
const half* __restrict__ vec,
const uint8_t* __restrict__ mat,
half* __restrict__ mul,
const half* __restrict__ scales,
const half* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int height,
int width
);
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster_old(
const half* __restrict__ vec,
const uint8_t* __restrict__ mat,
half* __restrict__ mul,
const half* __restrict__ scales,
const half* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int height,
int width
);
template <typename scalar_t>
__global__ void VecQuant4BatchMatMulColumnCompressionKernel_old(
const scalar_t* __restrict__ vec,
const uint8_t* __restrict__ mat,
scalar_t* __restrict__ mul,
const scalar_t* __restrict__ scales,
const scalar_t* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int height,
int width
);
__global__ void VecQuant8BatchMatMulKernel_faster(
const half* __restrict__ vec,
const uint8_t* __restrict__ mat,
half* __restrict__ mul,
const half* __restrict__ scales,
const half* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int vec_height,
int height,
int width
);
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster(
const half* __restrict__ vec,
const uint8_t* __restrict__ mat,
half* __restrict__ mul,
const half* __restrict__ scales,
const half* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int height,
int width
);
const int BLOCKWIDTH = 128;
const int BLOCKHEIGHT8 = 32;
const int BLOCKHEIGHT4 = 16;
const int BLOCKHEIGHT_OLD4 = 128;
//const int BLOCKHEIGHT_OLD8 = 128;
__device__ inline unsigned int as_unsigned(int i) {
return *reinterpret_cast<unsigned int*>(&i);
}
__device__ inline int as_int(int i) {
return *reinterpret_cast<int*>(&i);
}
void vecquant8matmul_batched_column_compression_cuda(
torch::Tensor vec,
torch::Tensor mat,
torch::Tensor mul,
torch::Tensor scales,
torch::Tensor zeros
) {
int batch = vec.size(0);
int heads = vec.size(1);
int vec_row = vec.size(2);
int height = vec.size(3);
int width = mat.size(3) * 4;
dim3 blocks(
(height + BLOCKWIDTH - 1) / BLOCKWIDTH,
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
);
dim3 threads(BLOCKWIDTH);
AT_DISPATCH_FLOATING_TYPES(
vec.type(), "vecquant8matmul_batched_cuda", ([&] {
VecQuant8BatchMatMulColumnCompressionKernel<<<blocks, threads>>>(
vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
scales.data<scalar_t>(), zeros.data<int>(),
batch, heads, vec_row, height, width
);
})
);
}
template <typename scalar_t>
__global__ void VecQuant8BatchMatMulColumnCompressionKernel(
const scalar_t* __restrict__ vec,
const int* __restrict__ mat,
scalar_t* __restrict__ mul,
const scalar_t* __restrict__ scales,
const int* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int height,
int width
) {
int weight_total = batch * heads * height * width / 4;
int input_total = batch * heads * vec_row * height;
int out_total = batch * heads * vec_row * width;
int tid = threadIdx.x;
// h is index of height with step being BLOCKWIDTH
int h = BLOCKWIDTH * blockIdx.x;
// w is index of width with step being 1
int w = BLOCKWIDTH * blockIdx.y + tid;
if (w >= width && tid >= height) {
return;
}
__shared__ scalar_t blockvec[BLOCKWIDTH];
int k;
scalar_t w_tmp;
float weight[BLOCKWIDTH];
for (int b = 0; b < batch; ++b){
for (int head = 0; head < heads; ++head){
int batch_shift = b * heads + head;
for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
int i_w = (w / 4);
int w_bit = (w % 4) * 8;
int w_index = (batch_shift * height + h + k) * width / 4 + i_w;
if (w_index >= weight_total || w >= width) {
weight[k] = 0;
} else {
scalar_t scale = scales[batch_shift * height + h + k];
scalar_t zero = zeros[batch_shift * height + h + k];
w_tmp = ((as_unsigned(mat[w_index]) >> w_bit) & 0xFF);
weight[k] = scale * (w_tmp - zero);
}
}
scalar_t res;
for (int vr = 0; vr < vec_row; ++vr){
res = 0;
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
if (vec_index < input_total) {
blockvec[tid] = vec[vec_index];
} else {
blockvec[tid] = 0;
}
__syncthreads();
for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
// res is the dot product of BLOCKWIDTH elements (part of width)
res += weight[k] * blockvec[k];
}
// add res to the final result, final matrix shape: (batch, vec_row, width)
int out_index = (batch_shift * vec_row + vr) * width + w;
if (out_index < out_total) {
atomicAdd(&mul[out_index], res);
}
__syncthreads();
}
}
}
}
void vecquant8matmul_batched_cuda(
torch::Tensor vec,
torch::Tensor mat,
torch::Tensor mul,
torch::Tensor scales,
torch::Tensor zeros
) {
int batch = vec.size(0);
int heads = vec.size(1);
int vec_row = vec.size(2);
int vec_height = vec.size(3);
int height = mat.size(2);
int width = mat.size(3);
int zero_width = zeros.size(2);
dim3 blocks(
(height + BLOCKHEIGHT8 - 1) / BLOCKHEIGHT8,
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
);
dim3 threads(BLOCKWIDTH);
AT_DISPATCH_FLOATING_TYPES(
vec.type(), "vecquant8matmul_batched_cuda", ([&] {
VecQuant8BatchMatMulKernel<<<blocks, threads>>>(
vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
scales.data<scalar_t>(), zeros.data<int>(),
batch, heads, vec_row, vec_height, height, width, zero_width
);
})
);
}
template <typename scalar_t>
__global__ void VecQuant8BatchMatMulKernel(
const scalar_t* __restrict__ vec,
const int* __restrict__ mat,
scalar_t* __restrict__ mul,
const scalar_t* __restrict__ scales,
const int* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int vec_height,
int height,
int width,
int zero_width
) {
int weight_total = batch * heads * height * width;
int input_total = batch * heads * vec_row * vec_height;
int out_total = batch * heads * vec_row * width;
int tid = threadIdx.x;
// h is index of height with step being BLOCKHEIGHT8
int h = BLOCKHEIGHT8 * blockIdx.x;
// w is index of width with step being 1
int w = BLOCKWIDTH * blockIdx.y + tid;
if (w >= width && tid >= vec_height) {
return;
}
__shared__ scalar_t blockvec[BLOCKWIDTH];
// i is index of mat of block first row
int i = width * h + w;
// if (i >= width * height) {
// return;
// }
int k;
scalar_t w_tmp;
int z_w = w / 4;
int z_mod = (w % 4) * 8;
float weight[BLOCKWIDTH];
for (int b = 0; b < batch; ++b){
for (int head = 0; head < heads; ++head){
int batch_shift = b * heads + head;
for (k = 0; k < BLOCKWIDTH && h * 4 + k < vec_height; ++k){
int k_w = (k / 4);
int k_bit = (k % 4) * 8;
int w_index = batch_shift * height * width + i + (k_w * width);
if (w_index >= weight_total || w >= width) {
weight[k] = 0;
} else {
scalar_t scale = scales[batch_shift * width + w];
scalar_t zero;
if (zero_width == width) {
zero = zeros[batch_shift * width + w];
} else {
zero = scalar_t(((as_unsigned(zeros[batch_shift * zero_width + z_w]) >> z_mod) & 0xFF) + 1);
}
w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xFF);
weight[k] = scale * (w_tmp - zero);
}
}
scalar_t res;
for (int vr = 0; vr < vec_row; ++vr){
res = 0;
int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
if (vec_index < input_total) {
blockvec[tid] = vec[vec_index];
} else {
blockvec[tid] = 0;
}
__syncthreads();
for (k = 0; k < BLOCKWIDTH && h * 4 + k < vec_height; ++k){
// res is the dot product of BLOCKWIDTH elements (part of width)
res += weight[k] * blockvec[k];
}
// add res to the final result, final matrix shape: (batch, vec_row, width)
int out_index = (batch_shift * vec_row + vr) * width + w;
if (out_index < out_total) {
atomicAdd(&mul[out_index], res);
}
__syncthreads();
}
}
}
}
void vecquant8matmul_cuda(
torch::Tensor vec,
torch::Tensor mat,
torch::Tensor mul,
torch::Tensor scales,
torch::Tensor zeros,
torch::Tensor g_idx
) {
int batch = vec.size(0);
int vec_height = vec.size(1);
int height = mat.size(0);
int width = mat.size(1);
int zero_width = zeros.size(1);
dim3 blocks(
(height + BLOCKHEIGHT8 - 1) / BLOCKHEIGHT8,
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
);
dim3 threads(BLOCKWIDTH);
AT_DISPATCH_FLOATING_TYPES(
vec.type(), "vecquant8matmul_cuda", ([&] {
VecQuant8MatMulKernel<<<blocks, threads>>>(
vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
scales.data<scalar_t>(), zeros.data<int>(), g_idx.data<int>(),
batch, vec_height, height, width, zero_width
);
})
);
}
template <typename scalar_t>
__global__ void VecQuant8MatMulKernel(
const scalar_t* __restrict__ vec,
const int* __restrict__ mat,
scalar_t* __restrict__ mul,
const scalar_t* __restrict__ scales,
const int* __restrict__ zeros,
const int* __restrict__ g_idx,
int batch,
int vec_height,
int height,
int width,
int zero_width
) {
int h = BLOCKHEIGHT8 * blockIdx.x;
int w = BLOCKWIDTH * blockIdx.y + threadIdx.x;
__shared__ scalar_t blockvec[BLOCKWIDTH];
int i = width * h + w;
int g_h = h * 4;
int k;
unsigned int g;
scalar_t w_tmp;
int z_w = w / 4;
int z_mod = (w % 4) * 8;
float weight[BLOCKWIDTH];
for (k = 0; k < BLOCKWIDTH; ++k){
int k_w = (k / 4);
int k_bit = (k % 4) * 8;
g = as_int(g_idx[g_h + k]);
scalar_t scale = scales[g * width + w];
scalar_t zero = scalar_t(((as_unsigned(zeros[g * zero_width + z_w]) >> z_mod) & 0xFF) + 1);
w_tmp = ((as_unsigned(mat[i + (k_w * width)]) >> k_bit) & 0xFF);
weight[k] = scale * (w_tmp - zero);
}
scalar_t res;
for (int b = 0; b < batch; ++b){
res = 0;
blockvec[threadIdx.x] = vec[b * vec_height + blockIdx.x * BLOCKWIDTH + threadIdx.x];
__syncthreads();
for (k = 0; k < BLOCKWIDTH; ++k){
res += weight[k] * blockvec[k];
}
atomicAdd(&mul[b * width + w], res);
__syncthreads();
}
}
void vecquant4matmul_batched_cuda(
torch::Tensor vec,
torch::Tensor mat,
torch::Tensor mul,
torch::Tensor scales,
torch::Tensor zeros
) {
int batch = vec.size(0);
int heads = vec.size(1);
int vec_row = vec.size(2);
int vec_height = vec.size(3);
int height = mat.size(2);
int width = mat.size(3);
int zero_width = zeros.size(2);
dim3 blocks(
(height + BLOCKHEIGHT4 - 1) / BLOCKHEIGHT4,
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
);
dim3 threads(BLOCKWIDTH);
AT_DISPATCH_FLOATING_TYPES(
vec.type(), "vecquant4matmul_batched_cuda", ([&] {
VecQuant4BatchMatMulKernel<<<blocks, threads>>>(
vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
scales.data<scalar_t>(), zeros.data<int>(),
batch, heads, vec_row, vec_height, height, width, zero_width
);
})
);
}
template <typename scalar_t>
__global__ void VecQuant4BatchMatMulKernel(
const scalar_t* __restrict__ vec,
const int* __restrict__ mat,
scalar_t* __restrict__ mul,
const scalar_t* __restrict__ scales,
const int* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int vec_height,
int height,
int width,
int zero_width
) {
int weight_total = batch * heads * height * width;
int input_total = batch * heads * vec_row * vec_height;
int out_total = batch * heads * vec_row * width;
int tid = threadIdx.x;
// h is index of height with step being BLOCKHEIGHT4
int h = BLOCKHEIGHT4 * blockIdx.x;
// w is index of width with step being 1
int w = BLOCKWIDTH * blockIdx.y + tid;
if (w >= width && tid >= vec_height) {
return;
}
__shared__ scalar_t blockvec[BLOCKWIDTH];
// i is index of mat of block first row
int i = width * h + w;
int k;
scalar_t w_tmp;
int z_w = w / 8;
int z_mod = (w % 8) * 4;
float weight[BLOCKWIDTH];
for (int b = 0; b < batch; ++b){
for (int head = 0; head < heads; ++head){
int batch_shift = b * heads + head;
for (k = 0; k < BLOCKWIDTH && h * 8 + k < vec_height; ++k){
int k_w = (k / 8);
int k_bit = (k % 8) * 4;
int w_index = batch_shift * height * width + i + (k_w * width);
if (w_index >= weight_total || w >= width) {
weight[k] = 0;
} else {
scalar_t scale = scales[batch_shift * width + w];
scalar_t zero;
if (zero_width == width) {
zero = zeros[batch_shift * width + w];
} else {
zero = scalar_t(((as_unsigned(zeros[batch_shift * zero_width + z_w]) >> z_mod) & 0xF));
}
w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xF);
weight[k] = scale * (w_tmp - zero);
}
}
scalar_t res;
for (int vr = 0; vr < vec_row; ++vr){
res = 0;
int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
if (vec_index < input_total) {
blockvec[tid] = vec[vec_index];
} else {
blockvec[tid] = 0;
}
__syncthreads();
for (k = 0; k < BLOCKWIDTH && h * 8 + k < vec_height; ++k){
// res is the dot product of BLOCKWIDTH elements (part of width)
res += weight[k] * blockvec[k];
}
// add res to the final result, final matrix shape: (batch, vec_row, width)
int out_index = (batch_shift * vec_row + vr) * width + w;
if (out_index < out_total) {
atomicAdd(&mul[out_index], res);
}
__syncthreads();
}
}
}
}
void vecquant4matmul_batched_column_compression_cuda(
torch::Tensor vec,
torch::Tensor mat,
torch::Tensor mul,
torch::Tensor scales,
torch::Tensor zeros
) {
int batch = vec.size(0);
int heads = vec.size(1);
int vec_row = vec.size(2);
int height = vec.size(3);
int width = mat.size(3) * 8;
dim3 blocks(
(height + BLOCKWIDTH - 1) / BLOCKWIDTH,
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
);
dim3 threads(BLOCKWIDTH);
AT_DISPATCH_FLOATING_TYPES(
vec.type(), "vecquant4matmul_batched_cuda", ([&] {
VecQuant4BatchMatMulColumnCompressionKernel<<<blocks, threads>>>(
vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
scales.data<scalar_t>(), zeros.data<int>(),
batch, heads, vec_row, height, width
);
})
);
}
template <typename scalar_t>
__global__ void VecQuant4BatchMatMulColumnCompressionKernel(
const scalar_t* __restrict__ vec,
const int* __restrict__ mat,
scalar_t* __restrict__ mul,
const scalar_t* __restrict__ scales,
const int* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int height,
int width
) {
int weight_total = batch * heads * height * width / 8;
int input_total = batch * heads * vec_row * height;
int out_total = batch * heads * vec_row * width;
int tid = threadIdx.x;
// h is index of height with step being BLOCKWIDTH
int h = BLOCKWIDTH * blockIdx.x;
// w is index of width with step being 1
int w = BLOCKWIDTH * blockIdx.y + tid;
if (w >= width && tid >= height) {
return;
}
__shared__ scalar_t blockvec[BLOCKWIDTH];
int k;
scalar_t w_tmp;
float weight[BLOCKWIDTH];
for (int b = 0; b < batch; ++b){
for (int head = 0; head < heads; ++head){
int batch_shift = b * heads + head;
for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
int i_w = (w / 8);
int w_bit = (w % 8) * 4;
int w_index = (batch_shift * height + h + k) * width / 8 + i_w;
if (w_index >= weight_total || w >= width) {
weight[k] = 0;
} else {
scalar_t scale = scales[batch_shift * height + h + k];
scalar_t zero = zeros[batch_shift * height + h + k];
w_tmp = ((as_unsigned(mat[w_index]) >> w_bit) & 0xF);
weight[k] = scale * (w_tmp - zero);
}
}
scalar_t res;
for (int vr = 0; vr < vec_row; ++vr){
res = 0;
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
if (vec_index < input_total) {
blockvec[tid] = vec[vec_index];
} else {
blockvec[tid] = 0;
}
__syncthreads();
for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
// res is the dot product of BLOCKWIDTH elements (part of width)
res += weight[k] * blockvec[k];
}
// add res to the final result, final matrix shape: (batch, vec_row, width)
int out_index = (batch_shift * vec_row + vr) * width + w;
if (out_index < out_total) {
atomicAdd(&mul[out_index], res);
}
__syncthreads();
}
}
}
}
void vecquant8matmul_batched_old_cuda(
torch::Tensor vec,
torch::Tensor mat,
torch::Tensor mul,
torch::Tensor scales,
torch::Tensor zeros
) {
int batch = vec.size(0);
int heads = vec.size(1);
int vec_row = vec.size(2);
int vec_height = vec.size(3);
int height = mat.size(2);
int width = mat.size(3);
int zero_width = zeros.size(2);
dim3 blocks(
(height + BLOCKWIDTH - 1) / BLOCKWIDTH,
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
);
dim3 threads(BLOCKWIDTH);
AT_DISPATCH_FLOATING_TYPES(
vec.type(), "vecquant8matmul_batched_old_cuda", ([&] {
VecQuant8BatchMatMulKernel_old<<<blocks, threads>>>(
vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(),
scales.data<scalar_t>(), zeros.data<scalar_t>(),
batch, heads, vec_row, vec_height, height, width, zero_width
);
})
);
}
template <typename scalar_t>
__global__ void VecQuant8BatchMatMulKernel_old(
const scalar_t* __restrict__ vec,
const uint8_t* __restrict__ mat,
scalar_t* __restrict__ mul,
const scalar_t* __restrict__ scales,
const scalar_t* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int vec_height,
int height,
int width,
int zero_width
) {
int weight_total = batch * heads * height * width;
int input_total = batch * heads * vec_row * vec_height;
int out_total = batch * heads * vec_row * width;
int tid = threadIdx.x;
// h is index of height with step being BLOCKHEIGHT8
int h = BLOCKWIDTH * blockIdx.x;
// w is index of width with step being 1
int w = BLOCKWIDTH * blockIdx.y + tid;
if (w >= width && tid >= vec_height) {
return;
}
__shared__ scalar_t blockvec[BLOCKWIDTH];
// i is index of mat of block first row
int i = width * h + w;
int k;
scalar_t w_tmp;
float weight[BLOCKWIDTH];
for (int b = 0; b < batch; ++b){
for (int head = 0; head < heads; ++head){
int batch_shift = b * heads + head;
for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){
int k_w = k;
int w_index = batch_shift * height * width + i + (k_w * width);
if (w_index >= weight_total || w >= width) {
weight[k] = 0;
} else {
scalar_t scale = scales[batch_shift * width + w];
scalar_t zero = zeros[batch_shift * width + w];
w_tmp = as_unsigned(mat[w_index]);
weight[k] = scale * (w_tmp - zero);
}
}
scalar_t res;
for (int vr = 0; vr < vec_row; ++vr){
res = 0;
int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
if (vec_index < input_total) {
blockvec[tid] = vec[vec_index];
} else {
blockvec[tid] = 0;
}
__syncthreads();
for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){
// res is the dot product of BLOCKWIDTH elements (part of width)
res += weight[k] * blockvec[k];
}
// add res to the final result, final matrix shape: (batch, vec_row, width)
int out_index = (batch_shift * vec_row + vr) * width + w;
if (out_index < out_total) {
atomicAdd(&mul[out_index], res);
}
__syncthreads();
}
}
}
}
void vecquant8matmul_batched_faster_cuda(
torch::Tensor vec,
torch::Tensor mat,
torch::Tensor mul,
torch::Tensor scales,
torch::Tensor zeros
) {
int batch = vec.size(0);
int heads = vec.size(1);
int vec_row = vec.size(2);
int vec_height = vec.size(3);
int height = mat.size(2);
int width = mat.size(3);
int zero_width = zeros.size(2);
dim3 blocks(
(height + BLOCKWIDTH - 1) / BLOCKWIDTH,
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
);
dim3 threads(BLOCKWIDTH);
VecQuant8BatchMatMulKernel_faster<<<blocks, threads>>>(
(half*) vec.data_ptr(),
(uint8_t*) mat.data_ptr(),
(half*) mul.data_ptr(),
(half*) scales.data_ptr(),
(half*) zeros.data_ptr(),
batch, heads, vec_row, vec_height, height, width, zero_width
);
}
__global__ void VecQuant8BatchMatMulKernel_faster(
const half* __restrict__ vec,
const uint8_t* __restrict__ mat,
half* __restrict__ mul,
const half* __restrict__ scales,
const half* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int vec_height,
int height,
int width,
int zero_width
) {
//int weight_total = batch * heads * height * width;
int input_total = batch * heads * vec_row * vec_height;
int out_total = batch * heads * vec_row * width;
int tid = threadIdx.x;
int h = BLOCKWIDTH * blockIdx.x;
int w = BLOCKWIDTH * blockIdx.y + tid;
if (w >= width && tid >= height) {
return;
}
__shared__ float blockvec[BLOCKWIDTH];
int i = width * h + w;
int k;
float w_tmp;
float weight[BLOCKWIDTH];
for (int b = 0; b < batch; ++b){
for (int head = 0; head < heads; ++head){
int batch_shift = b * heads + head;
for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){
int k_w = k;
int w_index = batch_shift * height * width + i + (k_w * width);
float scale = __half2float(scales[batch_shift * width + w]);
float zero = __half2float(zeros[batch_shift * width + w]);
w_tmp = as_unsigned(mat[w_index]);
weight[k] = scale *(w_tmp-zero);
}
float res;
for (int vr = 0; vr < vec_row; ++vr){
res = 0;
int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
if (vec_index < input_total) {
blockvec[tid] = __half2float(vec[vec_index]);
} else {
blockvec[tid] = 0;
}
__syncthreads();
for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){
float temp_res = weight[k]*blockvec[k];
res += temp_res;
}
int out_index = (batch_shift * vec_row + vr) * width + w;
if (out_index < out_total) {
atomicAdd(&mul[out_index], __float2half(res));
}
__syncthreads();
}
}
}
}
void vecquant8matmul_batched_column_compression_faster_cuda(
torch::Tensor vec,
torch::Tensor mat,
torch::Tensor mul,
torch::Tensor scales,
torch::Tensor zeros
) {
int batch = vec.size(0);
int heads = vec.size(1);
int vec_row = vec.size(2);
int height = vec.size(3);
int width = mat.size(3);
dim3 blocks(
(height + BLOCKWIDTH - 1) / BLOCKWIDTH,
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
);
dim3 threads(BLOCKWIDTH);
VecQuant8BatchMatMulColumnCompressionKernel_faster<<<blocks, threads>>>(
(half*) vec.data_ptr(),
(uint8_t*) mat.data_ptr(),
(half*) mul.data_ptr(),
(half*) scales.data_ptr(),
(half*) zeros.data_ptr(),
batch, heads, vec_row, height, width
);
}
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster(
const half* __restrict__ vec,
const uint8_t* __restrict__ mat,
half* __restrict__ mul,
const half* __restrict__ scales,
const half* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int height,
int width
) {
//int weight_total = batch * heads * height * width;
int input_total = batch * heads * vec_row * height;
int out_total = batch * heads * vec_row * width;
int tid = threadIdx.x;
int h = BLOCKWIDTH * blockIdx.x;
int w = BLOCKWIDTH * blockIdx.y + tid;
if (w >= width && tid >= height) {
return;
}
__shared__ float blockvec[BLOCKWIDTH];
int k;
float w_tmp;
float weight[BLOCKWIDTH];
for (int b = 0; b < batch; ++b){
for (int head = 0; head < heads; ++head){
int batch_shift = b * heads + head;
for (k = 0; k < BLOCKWIDTH; ++k){
int w_index = (batch_shift * height + h + k) * width + w;
float scale = __half2float(scales[batch_shift * height + h + k]);
float zero = __half2float(zeros[batch_shift * height + h + k]);
w_tmp = mat[w_index];
weight[k] = scale * (w_tmp-zero);
}
float res;
for (int vr = 0; vr < vec_row; ++vr){
res = 0;
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
if (vec_index < input_total) {
blockvec[tid] = __half2float(vec[vec_index]);
} else {
blockvec[tid] = 0;
}
__syncthreads();
for (k = 0; k < BLOCKWIDTH; ++k){
res += weight[k]*blockvec[k];
}
int out_index = (batch_shift * vec_row + vr) * width + w;
if (out_index < out_total) {
atomicAdd(&mul[out_index], __float2half(res));
}
__syncthreads();
}
}
}
}
void vecquant8matmul_batched_column_compression_old_cuda(
torch::Tensor vec,
torch::Tensor mat,
torch::Tensor mul,
torch::Tensor scales,
torch::Tensor zeros
) {
int batch = vec.size(0);
int heads = vec.size(1);
int vec_row = vec.size(2);
int height = vec.size(3);
int width = mat.size(3);
dim3 blocks(
(height + BLOCKWIDTH - 1) / BLOCKWIDTH,
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
);
dim3 threads(BLOCKWIDTH);
AT_DISPATCH_FLOATING_TYPES(
vec.type(), "vecquant8matmul_batched_column_compression_old_cuda", ([&] {
VecQuant8BatchMatMulColumnCompressionKernel_old<<<blocks, threads>>>(
vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(),
scales.data<scalar_t>(), zeros.data<scalar_t>(),
batch, heads, vec_row, height, width
);
})
);
}
template <typename scalar_t>
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_old(
const scalar_t* __restrict__ vec,
const uint8_t* __restrict__ mat,
scalar_t* __restrict__ mul,
const scalar_t* __restrict__ scales,
const scalar_t* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int height,
int width
) {
int weight_total = batch * heads * height * width;
int input_total = batch * heads * vec_row * height;
int out_total = batch * heads * vec_row * width;
int tid = threadIdx.x;
// h is index of height with step being BLOCKWIDTH
int h = BLOCKWIDTH * blockIdx.x;
// w is index of width with step being 1
int w = BLOCKWIDTH * blockIdx.y + tid;
if (w >= width && tid >= height) {
return;
}
__shared__ scalar_t blockvec[BLOCKWIDTH];
int k;
scalar_t w_tmp;
float weight[BLOCKWIDTH];
for (int b = 0; b < batch; ++b){
for (int head = 0; head < heads; ++head){
int batch_shift = b * heads + head;
for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
int w_index = (batch_shift * height + h + k) * width + w;
if (w_index >= weight_total || w >= width) {
weight[k] = 0;
} else {
scalar_t scale = scales[batch_shift * height + h + k];
scalar_t zero = zeros[batch_shift * height + h + k];
w_tmp = mat[w_index];
weight[k] = scale * (w_tmp - zero);
}
}
scalar_t res;
for (int vr = 0; vr < vec_row; ++vr){
res = 0;
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
if (vec_index < input_total) {
blockvec[tid] = vec[vec_index];
} else {
blockvec[tid] = 0;
}
__syncthreads();
for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
// res is the dot product of BLOCKWIDTH elements (part of width)
res += weight[k] * blockvec[k];
}
// add res to the final result, final matrix shape: (batch, vec_row, width)
int out_index = (batch_shift * vec_row + vr) * width + w;
if (out_index < out_total) {
atomicAdd(&mul[out_index], res);
}
__syncthreads();
}
}
}
}
void vecquant4matmul_batched_old_cuda(
torch::Tensor vec,
torch::Tensor mat,
torch::Tensor mul,
torch::Tensor scales,
torch::Tensor zeros
) {
int batch = vec.size(0);
int heads = vec.size(1);
int vec_row = vec.size(2);
int vec_height = vec.size(3);
int height = mat.size(2);
int width = mat.size(3);
int zero_width = zeros.size(2);
dim3 blocks(
(height + BLOCKHEIGHT_OLD4 - 1) / BLOCKHEIGHT_OLD4,
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
);
dim3 threads(BLOCKWIDTH);
AT_DISPATCH_FLOATING_TYPES(
vec.type(), "vecquant4matmul_batched_old_cuda", ([&] {
VecQuant4BatchMatMulKernel_old<<<blocks, threads>>>(
vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(),
scales.data<scalar_t>(), zeros.data<scalar_t>(),
batch, heads, vec_row, vec_height, height, width, zero_width
);
})
);
}
template <typename scalar_t>
__global__ void VecQuant4BatchMatMulKernel_old(
const scalar_t* __restrict__ vec,
const uint8_t* __restrict__ mat,
scalar_t* __restrict__ mul,
const scalar_t* __restrict__ scales,
const scalar_t* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int vec_height,
int height,
int width,
int zero_width
) {
int weight_total = batch * heads * height * width;
int input_total = batch * heads * vec_row * vec_height;
int out_total = batch * heads * vec_row * width;
int tid = threadIdx.x;
// h is index of height with step being BLOCKHEIGHT_OLD4
int h = BLOCKHEIGHT_OLD4 * blockIdx.x;
// w is index of width with step being 1
int w = BLOCKWIDTH * blockIdx.y + tid;
if (w >= width && tid >= vec_height) {
return;
}
__shared__ scalar_t blockvec[BLOCKWIDTH];
// i is index of mat of block first row
int i = width * h + w;
int k;
scalar_t w_tmp;
float weight[BLOCKWIDTH];
for (int b = 0; b < batch; ++b){
for (int head = 0; head < heads; ++head){
int batch_shift = b * heads + head;
for (k = 0; k < BLOCKWIDTH && h*2 + k < vec_height; ++k){
int k_w = (k / 2);
int k_bit = (k % 2) * 4;
int w_index = batch_shift * height * width + i + (k_w * width);
if (w_index >= weight_total || w >= width) {
weight[k] = 0;
} else {
scalar_t scale = scales[batch_shift * width + w];
scalar_t zero = zeros[batch_shift * width + w];
w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xF);
weight[k] = scale * (w_tmp - zero);
}
}
scalar_t res;
for (int vr = 0; vr < vec_row; ++vr){
res = 0;
int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
if (vec_index < input_total) {
blockvec[tid] = vec[vec_index];
} else {
blockvec[tid] = 0;
}
__syncthreads();
for (k = 0; k < BLOCKWIDTH && h*2 + k < vec_height; ++k){
// res is the dot product of BLOCKWIDTH elements (part of width)
res += weight[k] * blockvec[k];
}
// add res to the final result, final matrix shape: (batch, vec_row, width)
int out_index = (batch_shift * vec_row + vr) * width + w;
if (out_index < out_total) {
atomicAdd(&mul[out_index], res);
}
__syncthreads();
}
}
}
}
void vecquant4matmul_batched_column_compression_old_cuda(
torch::Tensor vec,
torch::Tensor mat,
torch::Tensor mul,
torch::Tensor scales,
torch::Tensor zeros
) {
int batch = vec.size(0);
int heads = vec.size(1);
int vec_row = vec.size(2);
int height = vec.size(3);
int width = mat.size(3);
dim3 blocks(
(height + BLOCKHEIGHT_OLD4 - 1) / BLOCKHEIGHT_OLD4,
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
);
dim3 threads(BLOCKWIDTH);
AT_DISPATCH_FLOATING_TYPES(
vec.type(), "vecquant4matmul_batched_column_compression_old_cuda", ([&] {
VecQuant4BatchMatMulColumnCompressionKernel_old<<<blocks, threads>>>(
vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(),
scales.data<scalar_t>(), zeros.data<scalar_t>(),
batch, heads, vec_row, height, width
);
})
);
}
template <typename scalar_t>
__global__ void VecQuant4BatchMatMulColumnCompressionKernel_old(
const scalar_t* __restrict__ vec,
const uint8_t* __restrict__ mat,
scalar_t* __restrict__ mul,
const scalar_t* __restrict__ scales,
const scalar_t* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int height,
int width
) {
int weight_total = batch * heads * height * width;
int input_total = batch * heads * vec_row * height;
int out_total = batch * heads * vec_row * width;
int tid = threadIdx.x;
// h is index of height with step being BLOCKWIDTH
int h = BLOCKHEIGHT_OLD4 * blockIdx.x;
// w is index of width with step being 1
int w = BLOCKWIDTH * blockIdx.y + tid;
if (w >= width && tid >= height) {
return;
}
__shared__ scalar_t blockvec[BLOCKWIDTH];
int k;
scalar_t w_tmp;
float weight[BLOCKWIDTH];
for (int b = 0; b < batch; ++b){
for (int head = 0; head < heads; ++head){
int batch_shift = b * heads + head;
for (k = 0; k < BLOCKWIDTH && h*2 + k < height; ++k){
int k_w = (k / 2);
int k_bit = (k % 2) * 4;
int w_index = (batch_shift * height + h + k) * width + k_w;
if (w_index >= weight_total || w >= width) {
weight[k] = 0;
} else {
scalar_t scale = scales[batch_shift * height + h + k];
scalar_t zero = zeros[batch_shift * height + h + k];
w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xF);
weight[k] = scale * (w_tmp - zero);
}
}
scalar_t res;
for (int vr = 0; vr < vec_row; ++vr){
res = 0;
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
if (vec_index < input_total) {
blockvec[tid] = vec[vec_index];
} else {
blockvec[tid] = 0;
}
__syncthreads();
for (k = 0; k < BLOCKWIDTH && h*2 + k < height; ++k){
// res is the dot product of BLOCKWIDTH elements (part of width)
res += weight[k] * blockvec[k];
}
// add res to the final result, final matrix shape: (batch, vec_row, width)
int out_index = (batch_shift * vec_row + vr) * width + w;
if (out_index < out_total) {
atomicAdd(&mul[out_index], res);
}
__syncthreads();
}
}
}
}
void vecquant8matmul_batched_faster_old_cuda(
torch::Tensor vec,
torch::Tensor mat,
torch::Tensor mul,
torch::Tensor scales,
torch::Tensor zeros
) {
int batch = vec.size(0);
int heads = vec.size(1);
int vec_row = vec.size(2);
int vec_height = vec.size(3);
int height = mat.size(2);
int width = mat.size(3);
dim3 blocks(
(height + BLOCKWIDTH - 1) / BLOCKWIDTH,
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
);
dim3 threads(BLOCKWIDTH);
VecQuant8BatchMatMulKernel_faster_old<<<blocks, threads>>>(
(half*) vec.data_ptr(),
(uint8_t*) mat.data_ptr(),
(half*) mul.data_ptr(),
(half*) scales.data_ptr(),
(half*) zeros.data_ptr(),
batch, heads, vec_row, vec_height, height, width
);
}
__global__ void VecQuant8BatchMatMulKernel_faster_old(
const half* __restrict__ vec,
const uint8_t* __restrict__ mat,
half* __restrict__ mul,
const half* __restrict__ scales,
const half* __restrict__ zeros,
int batch,
int heads,
int vec_row,
int vec_height,
int height,
int width
) {
int weight_total = batch * heads * height * width;
int input_total = batch * heads * vec_row * vec_height;
int out_total = batch * heads * vec_row * width;
int tid = threadIdx.x;
const int BLOCKWIDTH_half = BLOCKWIDTH/2;
int h = BLOCKWIDTH * blockIdx.x; //head_dim, dim=-1
int w = BLOCKWIDTH * blockIdx.y + tid; //seq-len, +0-256 ,dim=-2
/*
if (w >= width && tid >= vec_height) {
return;
}
*/
__shared__ half blockvec[BLOCKWIDTH]; //256
int i = width * h + w;
int k;
half w_tmp1 = __float2half(0);
half w_tmp2 = __float2half(0);
half2 weight[BLOCKWIDTH_half];
for (int b = 0; b < batch; ++b){
for (int head = 0; head < heads; ++head){
int batch_shift = b * heads + head;
//int zero_index = batch_shift;
for (k = 0; k < BLOCKWIDTH_half; ++k){
int w_index1 = batch_shift * height * width + i + (2 * k * width); // [batch,head,h+k, w]
int w_index2 = batch_shift * height * width + i + ((2 * k + 1) * width);
int zero_index = batch_shift * width + w; // [batch,head, w]
if (w_index1 >= weight_total || w >= width || (2 * k + h) >= height) {
weight[k] = __float2half2_rn(0);
} else {
float zero_f=__half2float(zeros[zero_index]);
float scale_f= __half2float(scales[zero_index]);
if (w_index2 >= weight_total){
w_tmp1 = __float2half((as_unsigned(mat[w_index1]) -zero_f)*scale_f);
w_tmp2 = __float2half(0);
weight[k] = __halves2half2(w_tmp1,w_tmp2);
//printf("zero_index is %d w is %d height is %d width is %d w_index1 is %d w_tmp1 is %f w_tmp2 is %f zero is %f scale is %f low is %f high is %f \n ",zero_index,w,height, width,w_index1,__half2float(w_tmp1),__half2float(w_tmp2),zero_f,scale_f,__low2float(weight[k]),__high2float(weight[k]));
}else{
w_tmp1 = __int2half_rn(as_unsigned(mat[w_index1]));
w_tmp2 = __int2half_rn(as_unsigned(mat[w_index2]));
//weight[k] = __hmul2(__hsub2(__halves2half2(w_tmp1,w_tmp2), __halves2half2(zero,zero)),__halves2half2(scale,scale));
weight[k] = __hfma2(__halves2half2(w_tmp1,w_tmp2), __float2half2_rn(scale_f), __float2half2_rn(-(scale_f * zero_f)));
//printf("zero_index1 is %d zero_index2 is %d k is %d head is %d w is %d h is %d height is %d width is %d w_index1 is %d w_index2 is %d zero is %f scale is %f low is %f high is %f \n ",zero_index1,zero_index2,k,head,w,h,height, width,w_index1,w_index2,__half2float(zero1),__half2float(scale1),__low2float(weight[k]),__high2float(weight[k]));
}
}
}
for (int vr = 0; vr < vec_row; ++vr){
float res=0;
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
int out_index = (batch_shift * vec_row + vr) * width + w;
if (vec_index < input_total) {
//blockvec[tid] = __half2float(vec[vec_index]);// [batch, head, vr, tid(seq_len dim+)]
blockvec[tid] = vec[vec_index];
//printf("width is %d height is %d h is %d w is %d vec_index is %d out_index is %d vec_row is %d vec_height is %d,vr is %d tid is %d blockvec is %f\n",width,height, h,w,vec_index,out_index,vec_row,vec_height,vr,tid,blockvec[tid]);
} else {
blockvec[tid] = __float2half(0);
}
__syncthreads();
if (out_index < out_total) {
for (k = 0; k < BLOCKWIDTH_half; ++k){
half2 res2 = __hmul2(weight[k],__halves2half2(blockvec[2*k],blockvec[2*k+1]));
res += __low2float(res2) + __high2float(res2);
}
atomicAdd(&mul[out_index], __float2half(res));
}
__syncthreads();
}
}
}
}
void vecquant8matmul_batched_column_compression_faster_old_cuda(
torch::Tensor vec, // [batch,heads, seq_q, seq_v]
torch::Tensor mat, // [batch,heads, seq_v, head_dim]
torch::Tensor mul, // [batch,heads, seq_q,head_dim]
torch::Tensor scales, // [batch,heads, head_dim]
torch::Tensor zeros
) {
int batch = vec.size(0);
int heads = vec.size(1);
int vec_row = vec.size(2); //ql
int height = mat.size(2); //vl
int width = mat.size(3); //head_dim
dim3 blocks(
(height + BLOCKWIDTH - 1) / BLOCKWIDTH,
(width + BLOCKWIDTH - 1) / BLOCKWIDTH
);
dim3 threads(BLOCKWIDTH);
VecQuant8BatchMatMulColumnCompressionKernel_faster_old<<<blocks, threads>>>(
(half*) vec.data_ptr(),
(uint8_t*) mat.data_ptr(),
(half*) mul.data_ptr(),
(half*) scales.data_ptr(),
(half*) zeros.data_ptr(),
batch, heads, vec_row, height, width
);
}
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster_old(
const half* __restrict__ vec, // [batch,heads, seq_q, seq_v]
const uint8_t* __restrict__ mat, // [batch,heads, seq_v, head_dim]
half* __restrict__ mul, // [batch,heads, seq_q,head_dim]
const half* __restrict__ scales, // [batch,heads, seq_v]
const half* __restrict__ zeros,
int batch,
int heads,
int vec_row, //seq_q
int height, //seq_v
int width //head_dim
) {
int weight_total = batch * heads * height * width;
int input_total = batch * heads * vec_row * height;
int out_total = batch * heads * vec_row * width;
int tid = threadIdx.x;
int h = BLOCKWIDTH * blockIdx.x; // vl
int w = BLOCKWIDTH * blockIdx.y + tid; //head_dim + block
if (w >= width && tid >= height) {
return;
}
__shared__ half blockvec[BLOCKWIDTH];
int k;
half w_tmp1 = __float2half(0);
half w_tmp2 = __float2half(0);
int i = width * h + w;
const int BLOCKWIDTH_half = BLOCKWIDTH/2;
half2 weight[BLOCKWIDTH_half];
for (int b = 0; b < batch; ++b){
for (int head = 0; head < heads; ++head){
int batch_shift = b * heads + head;
//int zero_index = batch_shift;
for (k = 0; k < BLOCKWIDTH_half; ++k){
int w_index1 = batch_shift * height * width + i + (2 * k) * width; // [batch,head, h+k, w]
int w_index2 = batch_shift * height * width + i + ((2 * k + 1) * width);
int zero_index1 = batch_shift * height + h + 2*k; // [batch,head, w]
int zero_index2 = batch_shift * height + h + 2*k+1; // [batch,head, w]
if (w_index1 >= weight_total || (2 * k + h)>=height) {
weight[k]=__float2half2_rn(0);
} else{
//int zero_index = batch_shift + h; // [batch,head, w]
//float scale_f1 = __half2float(scales[zero_index1]);
//float zero_f1 = __half2float(zeros[zero_index1]);
if (w_index2>=weight_total){
w_tmp1 = __float2half((as_unsigned(mat[w_index1]) - __half2float(zeros[zero_index1]))* __half2float(scales[zero_index1]));
w_tmp2 = __float2half(0);
weight[k] = __halves2half2(w_tmp1,w_tmp2);
//printf("zero_index is %d k is %d w is %d head is %d height is %d width is %d w_index1 is %d w_tmp1 is %f w_tmp2 is %f zero is %f scale is %f low is %f high is %f \n ",zero_index,k,w,head,height, width,w_index1,__half2float(w_tmp1),__half2float(w_tmp2),zero_f,scale_f,__low2float(weight[k]),__high2float(weight[k]));
}else{
w_tmp1 = __int2half_rn(as_unsigned(mat[w_index1]));
w_tmp2 = __int2half_rn(as_unsigned(mat[w_index2]));
half zero1=zeros[zero_index1];
half zero2=zeros[zero_index2];
half scale1=scales[zero_index1];
half scale2=scales[zero_index2];
weight[k] = __hmul2(__hsub2(__halves2half2(w_tmp1,w_tmp2), __halves2half2(zero1,zero2)),__halves2half2(scale1,scale2));
//weight[k] = __hfma2(__halves2half2(w_tmp1,w_tmp2), __float2half2_rn(scale_f), __float2half2_rn(-(scale_f * zero_f)));
//printf("zero_index1 is %d zero_index2 is %d k is %d head is %d w is %d h is %d height is %d width is %d w_index1 is %d w_index2 is %d zero is %f scale is %f low is %f high is %f \n ",zero_index1,zero_index2,k,head,w,h,height, width,w_index1,w_index2,__half2float(zero1),__half2float(scale1),__low2float(weight[k]),__high2float(weight[k]));
}
}
}
for (int vr = 0; vr < vec_row; ++vr){
float res=0;
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
int out_index = (batch_shift * vec_row + vr) * width + w;
if (vec_index < input_total) {
//blockvec[tid] = __half2float(vec[vec_index]);
blockvec[tid] = vec[vec_index];
//printf("vec_index is %d out_index is %d vec_row is %d ,vr is %d tid is %d blockvec is %f\n",vec_index,out_index,vec_row,vr,tid,blockvec[tid]);
} else {
blockvec[tid] = __float2half(0);
//blockvec[tid] = 0;
}
__syncthreads();
if (out_index < out_total) {
for (k = 0; k < BLOCKWIDTH_half; ++k){
half2 res2 = __hmul2(weight[k],__halves2half2(blockvec[2*k],blockvec[2*k+1]));
res += __low2float(res2) + __high2float(res2);
}
atomicAdd(&mul[out_index], __float2half(res));
}
__syncthreads();
}
}
}
}