赛萌
commited on
Commit
•
b3bea9b
1
Parent(s):
33eda72
tiktoken
Browse files- qwen.tiktoken +0 -0
- tokenization_qwen.py +412 -0
qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenization_qwen.py
ADDED
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""Tokenization classes for QWen."""
|
7 |
+
|
8 |
+
import base64
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import requests
|
12 |
+
import unicodedata
|
13 |
+
from typing import Collection, Dict, List, Set, Tuple, Union, Any, Callable
|
14 |
+
|
15 |
+
import tiktoken
|
16 |
+
import numpy as np
|
17 |
+
from PIL import Image
|
18 |
+
from PIL import ImageFont
|
19 |
+
from PIL import ImageDraw
|
20 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
21 |
+
|
22 |
+
logger = logging.getLogger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
26 |
+
|
27 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
28 |
+
ENDOFTEXT = "<|endoftext|>"
|
29 |
+
IMSTART = "<|im_start|>"
|
30 |
+
IMEND = "<|im_end|>"
|
31 |
+
# as the default behavior is changed to allow special tokens in
|
32 |
+
# regular texts, the surface forms of special tokens need to be
|
33 |
+
# as different as possible to minimize the impact
|
34 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
35 |
+
SPECIAL_TOKENS = (
|
36 |
+
ENDOFTEXT,
|
37 |
+
IMSTART,
|
38 |
+
IMEND,
|
39 |
+
) + EXTRAS
|
40 |
+
IMG_TOKEN_SPAN = 256
|
41 |
+
|
42 |
+
|
43 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
44 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
45 |
+
contents = f.read()
|
46 |
+
return {
|
47 |
+
base64.b64decode(token): int(rank)
|
48 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
49 |
+
}
|
50 |
+
|
51 |
+
def _list_find(
|
52 |
+
input_list: List[Any],
|
53 |
+
candidates: Tuple[Any],
|
54 |
+
start: int = 0,
|
55 |
+
):
|
56 |
+
for i in range(start, len(input_list)):
|
57 |
+
if input_list[i] in candidates:
|
58 |
+
return i
|
59 |
+
return -1
|
60 |
+
|
61 |
+
def _replace_closed_tag(
|
62 |
+
input_tokens: List[Any],
|
63 |
+
start_tags: Union[Any, Tuple[Any]],
|
64 |
+
end_tags: Union[Any, Tuple[Any]],
|
65 |
+
inclusive_replace_func: Callable,
|
66 |
+
exclusive_replace_func: Callable = lambda x: x,
|
67 |
+
):
|
68 |
+
if isinstance(start_tags, (str, int)):
|
69 |
+
start_tags = (start_tags,)
|
70 |
+
if isinstance(end_tags, (str, int)):
|
71 |
+
end_tags = (end_tags,)
|
72 |
+
assert len(start_tags) == len(end_tags)
|
73 |
+
|
74 |
+
output_tokens = []
|
75 |
+
end = 0
|
76 |
+
while True:
|
77 |
+
start = _list_find(input_tokens, start_tags, end)
|
78 |
+
if start == -1:
|
79 |
+
break
|
80 |
+
output_tokens.extend(exclusive_replace_func(input_tokens[end : start]))
|
81 |
+
tag_idx = start_tags.index(input_tokens[start])
|
82 |
+
end = _list_find(input_tokens, (end_tags[tag_idx],), start)
|
83 |
+
if end == -1:
|
84 |
+
raise ValueError("Unclosed image token")
|
85 |
+
output_tokens.extend(inclusive_replace_func(input_tokens[start : end + 1]))
|
86 |
+
end += 1
|
87 |
+
output_tokens.extend(exclusive_replace_func(input_tokens[end : ]))
|
88 |
+
return output_tokens
|
89 |
+
|
90 |
+
class QWenTokenizer(PreTrainedTokenizer):
|
91 |
+
"""QWen tokenizer."""
|
92 |
+
|
93 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
94 |
+
|
95 |
+
def __init__(
|
96 |
+
self,
|
97 |
+
vocab_file,
|
98 |
+
errors="replace",
|
99 |
+
image_start_tag='<img>',
|
100 |
+
image_end_tag='</img>',
|
101 |
+
image_pad_tag='<imgpad>',
|
102 |
+
ref_start_tag='<ref>',
|
103 |
+
ref_end_tag='</ref>',
|
104 |
+
box_start_tag='<box>',
|
105 |
+
box_end_tag='</box>',
|
106 |
+
quad_start_tag='<quad>',
|
107 |
+
quad_end_tag='</quad>',
|
108 |
+
**kwargs,
|
109 |
+
):
|
110 |
+
super().__init__(**kwargs)
|
111 |
+
self.image_start_tag = image_start_tag
|
112 |
+
self.image_end_tag = image_end_tag
|
113 |
+
self.image_pad_tag = image_pad_tag
|
114 |
+
self.ref_start_tag = ref_start_tag
|
115 |
+
self.ref_end_tag = ref_end_tag
|
116 |
+
self.box_start_tag = box_start_tag
|
117 |
+
self.box_end_tag = box_end_tag
|
118 |
+
self.quad_start_tag = quad_start_tag
|
119 |
+
self.quad_end_tag = quad_end_tag
|
120 |
+
self.IMAGE_ST = (
|
121 |
+
ref_start_tag, ref_end_tag,
|
122 |
+
box_start_tag, box_end_tag,
|
123 |
+
quad_start_tag, quad_end_tag,
|
124 |
+
image_start_tag, image_end_tag,
|
125 |
+
image_pad_tag
|
126 |
+
)
|
127 |
+
|
128 |
+
self.errors = errors # how to handle errors in decoding
|
129 |
+
|
130 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: dict[bytes, int]
|
131 |
+
self.special_tokens = {
|
132 |
+
token: index
|
133 |
+
for index, token in enumerate(
|
134 |
+
SPECIAL_TOKENS + self.IMAGE_ST, start=len(self.mergeable_ranks)
|
135 |
+
)
|
136 |
+
}
|
137 |
+
self.img_start_id = self.special_tokens[self.image_start_tag]
|
138 |
+
self.img_end_id = self.special_tokens[self.image_end_tag]
|
139 |
+
self.img_pad_id = self.special_tokens[self.image_pad_tag]
|
140 |
+
self.ref_start_id = self.special_tokens[self.ref_start_tag]
|
141 |
+
self.ref_end_id = self.special_tokens[self.ref_end_tag]
|
142 |
+
self.box_start_id = self.special_tokens[self.box_start_tag]
|
143 |
+
self.box_end_id = self.special_tokens[self.box_end_tag]
|
144 |
+
self.quad_start_id = self.special_tokens[self.quad_start_tag]
|
145 |
+
self.quad_end_id = self.special_tokens[self.quad_end_tag]
|
146 |
+
|
147 |
+
enc = tiktoken.Encoding(
|
148 |
+
"Qwen",
|
149 |
+
pat_str=PAT_STR,
|
150 |
+
mergeable_ranks=self.mergeable_ranks,
|
151 |
+
special_tokens=self.special_tokens,
|
152 |
+
)
|
153 |
+
assert (
|
154 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
155 |
+
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
156 |
+
|
157 |
+
self.decoder = {
|
158 |
+
v: k for k, v in self.mergeable_ranks.items()
|
159 |
+
} # type: dict[int, bytes|str]
|
160 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
161 |
+
|
162 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
163 |
+
|
164 |
+
self.eod_id = self.tokenizer.eot_token
|
165 |
+
self.im_start_id = self.special_tokens[IMSTART]
|
166 |
+
self.im_end_id = self.special_tokens[IMEND]
|
167 |
+
|
168 |
+
def __len__(self) -> int:
|
169 |
+
return self.tokenizer.n_vocab
|
170 |
+
|
171 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
172 |
+
return self.mergeable_ranks
|
173 |
+
|
174 |
+
def convert_tokens_to_ids(
|
175 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
176 |
+
) -> List[int]:
|
177 |
+
ids = []
|
178 |
+
if isinstance(tokens, (str, bytes)):
|
179 |
+
if tokens in self.special_tokens:
|
180 |
+
return self.special_tokens[tokens]
|
181 |
+
else:
|
182 |
+
return self.mergeable_ranks.get(tokens)
|
183 |
+
for token in tokens:
|
184 |
+
if token in self.special_tokens:
|
185 |
+
ids.append(self.special_tokens[token])
|
186 |
+
else:
|
187 |
+
ids.append(self.mergeable_ranks.get(token))
|
188 |
+
return ids
|
189 |
+
|
190 |
+
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
|
191 |
+
if not special_tokens and new_tokens:
|
192 |
+
raise ValueError('Adding regular tokens is not supported')
|
193 |
+
for token in new_tokens:
|
194 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
195 |
+
if surface_form not in SPECIAL_TOKENS + self.IMAGE_ST:
|
196 |
+
raise ValueError('Adding unknown special tokens is not supported')
|
197 |
+
return 0
|
198 |
+
|
199 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
200 |
+
"""
|
201 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
202 |
+
|
203 |
+
Returns:
|
204 |
+
`Tuple(str)`: Paths to the files saved.
|
205 |
+
"""
|
206 |
+
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
207 |
+
with open(file_path, "w", encoding="utf8") as w:
|
208 |
+
for k, v in self.mergeable_ranks.items():
|
209 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
210 |
+
w.write(line)
|
211 |
+
return (file_path,)
|
212 |
+
|
213 |
+
def tokenize(
|
214 |
+
self,
|
215 |
+
text: str,
|
216 |
+
allowed_special: Union[Set, str] = "all",
|
217 |
+
disallowed_special: Union[Collection, str] = (),
|
218 |
+
**kwargs,
|
219 |
+
) -> List[Union[bytes, str]]:
|
220 |
+
"""
|
221 |
+
Converts a string in a sequence of tokens.
|
222 |
+
|
223 |
+
Args:
|
224 |
+
text (`str`):
|
225 |
+
The sequence to be encoded.
|
226 |
+
allowed_special (`Literal["all"]` or `set`):
|
227 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
228 |
+
Default to "all".
|
229 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
230 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
231 |
+
Default to an empty tuple.
|
232 |
+
|
233 |
+
kwargs (additional keyword arguments, *optional*):
|
234 |
+
Will be passed to the underlying model specific encode method.
|
235 |
+
|
236 |
+
Returns:
|
237 |
+
`List[bytes|str]`: The list of tokens.
|
238 |
+
"""
|
239 |
+
tokens = []
|
240 |
+
text = unicodedata.normalize("NFC", text)
|
241 |
+
|
242 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
243 |
+
for t in self.tokenizer.encode(
|
244 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
245 |
+
):
|
246 |
+
tokens.append(self.decoder[t])
|
247 |
+
|
248 |
+
def _encode_imgurl(img_tokens):
|
249 |
+
assert img_tokens[0] == self.image_start_tag and img_tokens[-1] == self.image_end_tag
|
250 |
+
img_tokens = img_tokens[1:-1]
|
251 |
+
img_url = b''.join(img_tokens)
|
252 |
+
out_img_tokens = list(map(self.decoder.get, img_url))
|
253 |
+
if len(out_img_tokens) > IMG_TOKEN_SPAN:
|
254 |
+
raise ValueError("The content in {}..{} is too long".format(
|
255 |
+
self.image_start_tag, self.image_end_tag))
|
256 |
+
out_img_tokens.extend([self.image_pad_tag] * (IMG_TOKEN_SPAN - len(out_img_tokens)))
|
257 |
+
out_img_tokens = [self.image_start_tag] + out_img_tokens + [self.image_end_tag]
|
258 |
+
return out_img_tokens
|
259 |
+
|
260 |
+
return _replace_closed_tag(tokens, self.image_start_tag, self.image_end_tag, _encode_imgurl)
|
261 |
+
|
262 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
263 |
+
"""
|
264 |
+
Converts a sequence of tokens in a single string.
|
265 |
+
"""
|
266 |
+
text = ""
|
267 |
+
temp = b""
|
268 |
+
for t in tokens:
|
269 |
+
if isinstance(t, str):
|
270 |
+
if temp:
|
271 |
+
text += temp.decode("utf-8", errors=self.errors)
|
272 |
+
temp = b""
|
273 |
+
text += t
|
274 |
+
elif isinstance(t, bytes):
|
275 |
+
temp += t
|
276 |
+
else:
|
277 |
+
raise TypeError("token should only be of type types or str")
|
278 |
+
if temp:
|
279 |
+
text += temp.decode("utf-8", errors=self.errors)
|
280 |
+
return text
|
281 |
+
|
282 |
+
@property
|
283 |
+
def vocab_size(self):
|
284 |
+
return self.tokenizer.n_vocab
|
285 |
+
|
286 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
287 |
+
"""Converts an id to a token, special tokens included"""
|
288 |
+
if index in self.decoder:
|
289 |
+
return self.decoder[index]
|
290 |
+
raise ValueError("unknown ids")
|
291 |
+
|
292 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
293 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
294 |
+
if token in self.special_tokens:
|
295 |
+
return self.special_tokens[token]
|
296 |
+
if token in self.mergeable_ranks:
|
297 |
+
return self.mergeable_ranks[token]
|
298 |
+
raise ValueError("unknown token")
|
299 |
+
|
300 |
+
def _tokenize(self, text: str, **kwargs):
|
301 |
+
"""
|
302 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
303 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
304 |
+
|
305 |
+
Do NOT take care of added tokens.
|
306 |
+
"""
|
307 |
+
raise NotImplementedError
|
308 |
+
|
309 |
+
def _decode(
|
310 |
+
self,
|
311 |
+
token_ids: Union[int, List[int]],
|
312 |
+
skip_special_tokens: bool = False,
|
313 |
+
errors: str = None,
|
314 |
+
**kwargs,
|
315 |
+
) -> str:
|
316 |
+
if isinstance(token_ids, int):
|
317 |
+
token_ids = [token_ids]
|
318 |
+
|
319 |
+
def _decode_imgurl(img_token_ids):
|
320 |
+
assert img_token_ids[0] == self.img_start_id and img_token_ids[-1] == self.img_end_id
|
321 |
+
img_token_ids = img_token_ids[1:-1]
|
322 |
+
img_token_ids = img_token_ids[ : img_token_ids.index(self.img_pad_id)]
|
323 |
+
img_url = bytes(img_token_ids).decode('utf-8')
|
324 |
+
return [self.img_start_id] + self.tokenizer.encode(img_url) + [self.img_end_id]
|
325 |
+
|
326 |
+
token_ids = _replace_closed_tag(token_ids, self.img_start_id, self.img_end_id, _decode_imgurl)
|
327 |
+
|
328 |
+
if skip_special_tokens:
|
329 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
330 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
331 |
+
|
332 |
+
def to_list_format(self, text: str):
|
333 |
+
text = unicodedata.normalize("NFC", text)
|
334 |
+
token_ids = self.tokenizer.encode(
|
335 |
+
text, allowed_special=set(self.IMAGE_ST + (ENDOFTEXT,)))
|
336 |
+
|
337 |
+
def _encode_vl_info(tokens):
|
338 |
+
if len(tokens) == 0:
|
339 |
+
return []
|
340 |
+
if tokens[0] == self.img_start_id and tokens[-1] == self.img_end_id:
|
341 |
+
key = 'image'
|
342 |
+
elif tokens[0] == self.ref_start_id and tokens[-1] == self.ref_end_id:
|
343 |
+
key = 'ref'
|
344 |
+
elif tokens[0] == self.box_start_id and tokens[-1] == self.box_end_id:
|
345 |
+
key = 'box'
|
346 |
+
elif tokens[0] == self.quad_start_id and tokens[-1] == self.quad_end_id:
|
347 |
+
key = 'quad'
|
348 |
+
else:
|
349 |
+
_tobytes = lambda x: x.encode('utf-8') if isinstance(x, str) else x
|
350 |
+
return [{'text': b''.join(map(_tobytes, map(self.decoder.get, tokens))).decode('utf-8')}]
|
351 |
+
val = b''.join(map(self.decoder.get, tokens[1:-1])).decode('utf-8')
|
352 |
+
return [{key: val}]
|
353 |
+
|
354 |
+
return _replace_closed_tag(
|
355 |
+
token_ids,
|
356 |
+
(self.img_start_id, self.ref_start_id, self.box_start_id, self.quad_start_id),
|
357 |
+
(self.img_end_id, self.ref_end_id, self.box_end_id, self.quad_end_id),
|
358 |
+
_encode_vl_info,
|
359 |
+
_encode_vl_info,
|
360 |
+
)
|
361 |
+
|
362 |
+
def _fetch_latest_picture(self, response, history):
|
363 |
+
if history is None:
|
364 |
+
history = []
|
365 |
+
_history = history + [(response, None)]
|
366 |
+
for q, r in _history[::-1]:
|
367 |
+
for ele in self.to_list_format(q)[::-1]:
|
368 |
+
if 'image' in ele:
|
369 |
+
return ele['image']
|
370 |
+
return None
|
371 |
+
|
372 |
+
def _fetch_all_box_with_ref(self, text):
|
373 |
+
list_format = self.to_list_format(text)
|
374 |
+
output = []
|
375 |
+
for i, ele in enumerate(list_format):
|
376 |
+
if 'box' in ele:
|
377 |
+
bbox = tuple(map(int, ele['box'].replace('(', '').replace(')', '').split(',')))
|
378 |
+
assert len(bbox) == 4
|
379 |
+
output.append({'box': bbox})
|
380 |
+
if i > 0 and 'ref' in list_format[i-1]:
|
381 |
+
output[-1]['ref'] = list_format[i-1]['ref'].strip()
|
382 |
+
return output
|
383 |
+
|
384 |
+
def draw_bbox_on_latest_picture(
|
385 |
+
self,
|
386 |
+
response,
|
387 |
+
history=None,
|
388 |
+
):
|
389 |
+
image = self._fetch_latest_picture(response, history)
|
390 |
+
if image is None:
|
391 |
+
return None
|
392 |
+
if image.startswith("http://") or image.startswith("https://"):
|
393 |
+
image = Image.open(requests.get(image, stream=True).raw)
|
394 |
+
else:
|
395 |
+
image = Image.open(image)
|
396 |
+
h, w = image.height, image.width
|
397 |
+
image = image.convert("RGB")
|
398 |
+
|
399 |
+
boxes = self._fetch_all_box_with_ref(response)
|
400 |
+
if not boxes:
|
401 |
+
return None
|
402 |
+
fnt = ImageFont.truetype("SimSun.ttf", 20)
|
403 |
+
draw = ImageDraw.Draw(image)
|
404 |
+
for box in boxes:
|
405 |
+
x1, y1, x2, y2 = box['box']
|
406 |
+
x1, y1, x2, y2 = (int(x1 / 1000 * w), int(y1 / 1000 * h), int(x2 / 1000 * w), int(y2 / 1000 * h))
|
407 |
+
draw.rectangle((x1, y1, x2, y2), outline='red', width=2)
|
408 |
+
if 'ref' in box:
|
409 |
+
draw.text((x1, y1), box['ref'], fill='red', font=fnt)
|
410 |
+
return image
|
411 |
+
|
412 |
+
|