---
language:
- zh
- en
tags:
- qwen
pipeline_tag: text-generation
inference: false
---
# Qwen-VL
Qwen-VL
🤗
🤖  |
Qwen-VL-Chat
🤗
🤖 
(Int4:
🤗
🤖 ) |
Qwen-VL-Plus
🤗
🤖  |
Qwen-VL-Max
🤗
🤖 
Web   |   
API   |   
WeChat   |   
Discord   |   
Paper   |   
Tutorial
**Qwen-VL** 是阿里云研发的大规模视觉语言模型(Large Vision Language Model, LVLM)。Qwen-VL 可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。Qwen-VL 系列模型性能强大,具备多语言对话、多图交错对话等能力,并支持中文开放域定位和细粒度图像识别与理解。
**Qwen-VL** (Qwen Large Vision Language Model) is the visual multimodal version of the large model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-VL accepts image, text, and bounding box as inputs, outputs text and bounding box. The features of Qwen-VL include:
目前,我们提供了Qwen-VL和Qwen-VL-Chat两个模型,分别为预训练模型和Chat模型。如果想了解更多关于模型的信息,请点击[链接](https://github.com/QwenLM/Qwen-VL/blob/master/visual_memo.md)查看我们的技术备忘录。本仓库为Qwen-VL-Chat仓库。
We release Qwen-VL and Qwen-VL-Chat, which are pretrained model and Chat model respectively. For more details about Qwen-VL, please refer to our [technical memo](https://github.com/QwenLM/Qwen-VL/blob/master/visual_memo.md). This repo is the one for Qwen-VL.
## 安装要求 (Requirements)
* python 3.8及以上版本
* pytorch 1.12及以上版本,推荐2.0及以上版本
* 建议使用CUDA 11.4及以上(GPU用户需考虑此选项)
* python 3.8 and above
* pytorch 1.12 and above, 2.0 and above are recommended
* CUDA 11.4 and above are recommended (this is for GPU users)
## 快速开始 (Quickstart)
我们提供简单的示例来说明如何利用 🤗 Transformers 快速使用 Qwen-VL。
在开始前,请确保你已经配置好环境并安装好相关的代码包。最重要的是,确保你满足上述要求,然后安装相关的依赖库。
Below, we provide simple examples to show how to use Qwen-VL with 🤗 Transformers.
Before running the code, make sure you have setup the environment and installed the required packages. Make sure you meet the above requirements, and then install the dependent libraries.
```bash
pip install -r requirements.txt
```
接下来你可以开始使用Transformers来使用我们的模型。关于视觉模块的更多用法,请参考[教程](TUTORIAL.md)。
Now you can start with Transformers. More usage aboue vision encoder, please refer to [tutorial](TUTORIAL_zh.md).
#### 🤗 Transformers
To use Qwen-VL for the inference, all you need to do is to input a few lines of codes as demonstrated below. However, **please make sure that you are using the latest code.**
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
import torch
torch.manual_seed(1234)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-VL", trust_remote_code=True)
# use bf16
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL", device_map="auto", trust_remote_code=True, bf16=True).eval()
# use fp16
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL", device_map="auto", trust_remote_code=True, fp16=True).eval()
# use cpu only
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL", device_map="cpu", trust_remote_code=True).eval()
# use cuda device
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL", device_map="cuda", trust_remote_code=True).eval()
# Specify hyperparameters for generation (No need to do this if you are using transformers>=4.32.0)
# model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-VL", trust_remote_code=True)
query = tokenizer.from_list_format([
{'image': 'https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg'},
{'text': 'Generate the caption in English with grounding:'},
])
inputs = tokenizer(query, return_tensors='pt')
inputs = inputs.to(model.device)
pred = model.generate(**inputs)
response = tokenizer.decode(pred.cpu()[0], skip_special_tokens=False)
print(response)
# https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpegGenerate the caption in English with grounding:[ Woman](451,379),(731,806) and[ her dog](219,424),(576,896) playing on the beach<|endoftext|>
image = tokenizer.draw_bbox_on_latest_picture(response)
if image:
image.save('2.jpg')
else:
print("no box")
```
## 评测
我们从两个角度评测了两个模型的能力:
1. 在**英文标准 Benchmark** 上评测模型的基础任务能力。目前评测了四大类多模态任务:
- Zero-shot Caption: 评测模型在未见过数据集上的零样本图片描述能力;
- General VQA: 评测模型的通用问答能力,例如判断题、颜色、个数、类目等问答能力;
- Text-based VQA:评测模型对于图片中文字相关的识别/问答能力,例如文档问答、图表问答、文字问答等;
- Referring Expression Compression:评测模型给定物体描述画检测框的能力;
2. **试金石 (TouchStone)**:为了评测模型整体的图文对话能力和人类对齐水平。我们为此构建了一个基于 GPT4 打分来评测 LVLM 模型的 Benchmark:TouchStone。在 TouchStone-v0.1 中:
- 评测基准总计涵盖 300+张图片、800+道题目、27个类别。包括基础属性问答、人物地标问答、影视作品问答、视觉推理、反事实推理、诗歌创作、故事写作,商品比较、图片解题等**尽可能广泛的类别**。
- 为了弥补目前 GPT4 无法直接读取图片的缺陷,我们给所有的带评测图片提供了**人工标注的充分详细描述**,并且将图片的详细描述、问题和模型的输出结果一起交给 GPT4 打分。
- 评测同时包含英文版本和中文版本。
评测结果如下:
We evaluated the model's ability from two perspectives:
1. **Standard Benchmarks**: We evaluate the model's basic task capabilities on four major categories of multimodal tasks:
- Zero-shot Caption: Evaluate model's zero-shot image captioning ability on unseen datasets;
- General VQA: Evaluate the general question-answering ability of pictures, such as the judgment, color, number, category, etc;
- Text-based VQA: Evaluate the model's ability to recognize text in pictures, such as document QA, chart QA, etc;
- Referring Expression Comprehension: Evaluate the ability to localize a target object in an image described by a referring expression.
2. **TouchStone**: To evaluate the overall text-image dialogue capability and alignment level with humans, we have constructed a benchmark called TouchStone, which is based on scoring with GPT4 to evaluate the LVLM model.
- The TouchStone benchmark covers a total of 300+ images, 800+ questions, and 27 categories. Such as attribute-based Q&A, celebrity recognition, writing poetry, summarizing multiple images, product comparison, math problem solving, etc;
- In order to break the current limitation of GPT4 in terms of direct image input, TouchStone provides fine-grained image annotations by human labeling. These detailed annotations, along with the questions and the model's output, are then presented to GPT4 for scoring.
- The benchmark includes both English and Chinese versions.
The results of the evaluation are as follows:
Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has a more comprehensive coverage in terms of capability range.
### 零样本图像描述 & 通用视觉问答 (Zero-shot Captioning & General VQA)
Model type |
Model |
Zero-shot Captioning |
General VQA |
NoCaps |
Flickr30K |
VQAv2dev |
OK-VQA |
GQA |
SciQA-Img (0-shot) |
VizWiz (0-shot) |
Generalist Models |
Flamingo-9B |
- |
61.5 |
51.8 |
44.7 |
- |
- |
28.8 |
Flamingo-80B |
- |
67.2 |
56.3 |
50.6 |
- |
- |
31.6 |
Unified-IO-XL |
100.0 |
- |
77.9 |
54.0 |
- |
- |
- |
Kosmos-1 |
- |
67.1 |
51.0 |
- |
- |
- |
29.2 |
Kosmos-2 |
- |
66.7 |
45.6 |
- |
- |
- |
- |
BLIP-2 (Vicuna-13B) |
103.9 |
71.6 |
65.0 |
45.9 |
32.3 |
61.0 |
19.6 |
InstructBLIP (Vicuna-13B) |
121.9 |
82.8 |
- |
- |
49.5 |
63.1 |
33.4 |
Shikra (Vicuna-13B) |
- |
73.9 |
77.36 |
47.16 |
- |
- |
- |
Qwen-VL (Qwen-7B) |
121.4 |
85.8 |
78.8 |
58.6 |
59.3 |
67.1 |
35.2 |
Qwen-VL-Chat |
120.2 |
81.0 |
78.2 |
56.6 |
57.5 |
68.2 |
38.9 |
Previous SOTA (Per Task Fine-tuning) |
- |
127.0 (PALI-17B) |
84.5 (InstructBLIP -FlanT5-XL) |
86.1 (PALI-X -55B) |
66.1 (PALI-X -55B) |
72.1 (CFR) |
92.53 (LLaVa+ GPT-4) |
70.9 (PALI-X -55B) |
- 在 Zero-shot Caption 中,Qwen-VL 在 Flickr30K 数据集上取得了 **SOTA** 的结果,并在 Nocaps 数据集上取得了和 InstructBlip 可竞争的结果。
- 在 General VQA 中,Qwen-VL 取得了 LVLM 模型同等量级和设定下 **SOTA** 的结果。
- For zero-shot image captioning, Qwen-VL achieves the **SOTA** on Flickr30K and competitive results on Nocaps with InstructBlip.
- For general VQA, Qwen-VL achieves the **SOTA** under the same generalist LVLM scale settings.
### 文本导向的视觉问答 (Text-oriented VQA)
Model type |
Model |
TextVQA |
DocVQA |
ChartQA |
AI2D |
OCR-VQA |
Generalist Models |
BLIP-2 (Vicuna-13B) |
42.4 |
- |
- |
- |
- |
InstructBLIP (Vicuna-13B) |
50.7 |
- |
- |
- |
- |
mPLUG-DocOwl (LLaMA-7B) |
52.6 |
62.2 |
57.4 |
- |
- |
Pic2Struct-Large (1.3B) |
- |
76.6 |
58.6 |
42.1 |
71.3 |
Qwen-VL (Qwen-7B) |
63.8 |
65.1 |
65.7 |
62.3 |
75.7 |
Specialist SOTAs (Specialist/Finetuned) |
PALI-X-55B (Single-task FT) (Without OCR Pipeline) |
71.44 |
80.0 |
70.0 |
81.2 |
75.0 |
- 在文字相关的识别/问答评测上,取得了当前规模下通用 LVLM 达到的最好结果。
- 分辨率对上述某几个评测非常重要,大部分 224 分辨率的开源 LVLM 模型无法完成以上评测,或只能通过切图的方式解决。Qwen-VL 将分辨率提升到 448,可以直接以端到端的方式进行以上评测。Qwen-VL 在很多任务上甚至超过了 1024 分辨率的 Pic2Struct-Large 模型。
- In text-related recognition/QA evaluation, Qwen-VL achieves the SOTA under the generalist LVLM scale settings.
- Resolution is important for several above evaluations. While most open-source LVLM models with 224 resolution are incapable of these evaluations or can only solve these by cutting images, Qwen-VL scales the resolution to 448 so that it can be evaluated end-to-end. Qwen-VL even outperforms Pic2Struct-Large models of 1024 resolution on some tasks.
### 细粒度视觉定位 (Referring Expression Comprehension)
Model type |
Model |
RefCOCO |
RefCOCO+ |
RefCOCOg |
GRIT |
val |
test-A |
test-B |
val |
test-A |
test-B |
val-u |
test-u |
refexp |
Generalist Models |
GPV-2 |
- |
- |
- |
- |
- |
- |
- |
- |
51.50 |
OFA-L* |
79.96 |
83.67 |
76.39 |
68.29 |
76.00 |
61.75 |
67.57 |
67.58 |
61.70 |
Unified-IO |
- |
- |
- |
- |
- |
- |
- |
- |
78.61 |
VisionLLM-H |
|
86.70 |
- |
- |
- |
- |
- |
- |
- |
Shikra-7B |
87.01 |
90.61 |
80.24 |
81.60 |
87.36 |
72.12 |
82.27 |
82.19 |
69.34 |
Shikra-13B |
87.83 |
91.11 |
81.81 |
82.89 |
87.79 |
74.41 |
82.64 |
83.16 |
69.03 |
Qwen-VL-7B |
89.36 |
92.26 |
85.34 |
83.12 |
88.25 |
77.21 |
85.58 |
85.48 |
78.22 |
Qwen-VL-7B-Chat |
88.55 |
92.27 |
84.51 |
82.82 |
88.59 |
76.79 |
85.96 |
86.32 |
- |
Specialist SOTAs (Specialist/Finetuned) |
G-DINO-L |
90.56 |
93.19 |
88.24 |
82.75 |
88.95 |
75.92 |
86.13 |
87.02 |
- |
UNINEXT-H |
92.64 |
94.33 |
91.46 |
85.24 |
89.63 |
79.79 |
88.73 |
89.37 |
- |
ONE-PEACE |
92.58 |
94.18 |
89.26 |
88.77 |
92.21 |
83.23 |
89.22 |
89.27 |
- |
- 在定位任务上,Qwen-VL 全面超过 Shikra-13B,取得了目前 Generalist LVLM 模型上在 Refcoco 上的 **SOTA**。
- Qwen-VL 并没有在任何中文定位数据上训练过,但通过中文 Caption 数据和 英文 Grounding 数据的训练,可以 Zero-shot 泛化出中文 Grounding 能力。
我们提供了以上**所有**评测脚本以供复现我们的实验结果。请阅读 [eval/EVALUATION.md](eval/EVALUATION.md) 了解更多信息。
- Qwen-VL achieves the **SOTA** in all above referring expression comprehension benchmarks.
- Qwen-VL has not been trained on any Chinese grounding data, but it can still generalize to the Chinese Grounding tasks in a zero-shot way by training Chinese Caption data and English Grounding data.
We provide all of the above evaluation scripts for reproducing our experimental results. Please read [eval/EVALUATION.md](eval/EVALUATION.md) for more information.
### 闲聊能力测评 (Chat Evaluation)
TouchStone 是一个基于 GPT4 打分来评测 LVLM 模型的图文对话能力和人类对齐水平的基准。它涵盖了 300+张图片、800+道题目、27个类别,包括基础属性、人物地标、视觉推理、诗歌创作、故事写作、商品比较、图片解题等**尽可能广泛的类别**。关于 TouchStone 的详细介绍,请参考[touchstone/README_CN.md](touchstone/README_CN.md)了解更多信息。
TouchStone is a benchmark based on scoring with GPT4 to evaluate the abilities of the LVLM model on text-image dialogue and alignment levels with humans. It covers a total of 300+ images, 800+ questions, and 27 categories, such as attribute-based Q&A, celebrity recognition, writing poetry, summarizing multiple images, product comparison, math problem solving, etc. Please read [touchstone/README_CN.md](touchstone/README.md) for more information.
#### 英语 (English)
| Model | Score |
|---------------|-------|
| PandaGPT | 488.5 |
| MiniGPT4 | 531.7 |
| InstructBLIP | 552.4 |
| LLaMA-AdapterV2 | 590.1 |
| mPLUG-Owl | 605.4 |
| LLaVA | 602.7 |
| Qwen-VL-Chat | 645.2 |
#### 中文 (Chinese)
| Model | Score |
|---------------|-------|
| VisualGLM | 247.1 |
| Qwen-VL-Chat | 401.2 |
Qwen-VL-Chat 模型在中英文的对齐评测中均取得当前 LVLM 模型下的最好结果。
Qwen-VL-Chat has achieved the best results in both Chinese and English alignment evaluation.
## 常见问题 (FAQ)
如遇到问题,敬请查阅 [FAQ](https://github.com/QwenLM/Qwen-VL/blob/master/FAQ_zh.md)以及issue区,如仍无法解决再提交issue。
If you meet problems, please refer to [FAQ](https://github.com/QwenLM/Qwen-VL/blob/master/FAQ.md) and the issues first to search a solution before you launch a new issue.
## 使用协议 (License Agreement)
研究人员与开发者可使用Qwen-VL和Qwen-VL-Chat或进行二次开发。我们同样允许商业使用,具体细节请查看[LICENSE](https://github.com/QwenLM/Qwen-VL/blob/master/LICENSE)。如需商用,请填写[问卷](https://dashscope.console.aliyun.com/openModelApply/qianwen)申请。
Researchers and developers are free to use the codes and model weights of both Qwen-VL and Qwen-VL-Chat. We also allow their commercial use. Check our license at [LICENSE](LICENSE) for more details.
## 引用 (Citation)[](https://)
如果你觉得我们的论文和代码对你的研究有帮助,请考虑:star: 和引用 :pencil: :)
If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil: :)
```BibTeX
@article{Qwen-VL,
title={Qwen-VL: A Frontier Large Vision-Language Model with Versatile Abilities},
author={Bai, Jinze and Bai, Shuai and Yang, Shusheng and Wang, Shijie and Tan, Sinan and Wang, Peng and Lin, Junyang and Zhou, Chang and Zhou, Jingren},
journal={arXiv preprint arXiv:2308.12966},
year={2023}
}
```
## 联系我们 (Contact Us)
如果你想给我们的研发团队和产品团队留言,请通过邮件(qianwen_opensource@alibabacloud.com)联系我们。
If you are interested to leave a message to either our research team or product team, feel free to send an email to qianwen_opensource@alibabacloud.com.