Text-to-Image
Diffusers
English
RedAIGC commited on
Commit
b631863
1 Parent(s): 2c8ffa2

Upload pipeline_sdxl_storymaker.py

Browse files
Files changed (1) hide show
  1. pipeline_sdxl_storymaker.py +680 -0
pipeline_sdxl_storymaker.py ADDED
@@ -0,0 +1,680 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The InstantX Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
17
+
18
+ import cv2
19
+ import math
20
+
21
+ import numpy as np
22
+ import PIL.Image
23
+ from PIL import Image
24
+ import torch, traceback, pdb
25
+ import torch.nn.functional as F
26
+
27
+ from diffusers.image_processor import PipelineImageInput
28
+
29
+ from diffusers.models import ControlNetModel
30
+
31
+ from diffusers.utils import (
32
+ deprecate,
33
+ logging,
34
+ replace_example_docstring,
35
+ )
36
+ from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
37
+ from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
38
+
39
+ from diffusers import StableDiffusionXLPipeline
40
+ from diffusers.utils.import_utils import is_xformers_available
41
+
42
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
43
+ from insightface.utils import face_align
44
+
45
+ from ip_adapter.resampler import Resampler
46
+ from ip_adapter.utils import is_torch2_available
47
+ from ip_adapter.ip_adapter_faceid import faceid_plus
48
+
49
+ from ip_adapter.attention_processor import IPAttnProcessor2_0 as IPAttnProcessor, AttnProcessor2_0 as AttnProcessor
50
+ from ip_adapter.attention_processor_faceid import LoRAIPAttnProcessor2_0 as LoRAIPAttnProcessor, LoRAAttnProcessor2_0 as LoRAAttnProcessor
51
+
52
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
53
+
54
+
55
+ EXAMPLE_DOC_STRING = """
56
+ Examples:
57
+ ```py
58
+ >>> # !pip install opencv-python transformers accelerate insightface
59
+ >>> import diffusers
60
+ >>> from diffusers.utils import load_image
61
+ >>> import cv2
62
+ >>> import torch
63
+ >>> import numpy as np
64
+ >>> from PIL import Image
65
+
66
+ >>> from insightface.app import FaceAnalysis
67
+ >>> from pipeline_sdxl_storymaker import StableDiffusionXLStoryMakerPipeline
68
+
69
+ >>> # download 'buffalo_l' under ./models
70
+ >>> app = FaceAnalysis(name='buffalo_l', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
71
+ >>> app.prepare(ctx_id=0, det_size=(640, 640))
72
+
73
+ >>> # download models under ./checkpoints
74
+ >>> storymaker_adapter = f'./checkpoints/ip-adapter.bin'
75
+
76
+ >>> pipe = StableDiffusionXLStoryMakerPipeline.from_pretrained(
77
+ ... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
78
+ ... )
79
+ >>> pipe.cuda()
80
+
81
+ >>> # load adapter
82
+ >>> pipe.load_storymaker_adapter(storymaker_adapter)
83
+
84
+ >>> prompt = "a person is taking a selfie, the person is wearing a red hat, and a volcano is in the distance"
85
+ >>> negative_prompt = "bad quality, NSFW, low quality, ugly, disfigured, deformed"
86
+
87
+ >>> # load an image
88
+ >>> image = load_image("your-example.jpg")
89
+ >>> # load the mask image of portrait
90
+ >>> mask_image = load_image("your-mask.jpg")
91
+
92
+ >>> face_info = app.get(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))[-1]
93
+
94
+ >>> # generate image
95
+ >>> image = pipe(
96
+ ... prompt, image=image, mask_image=mask_image,face_info=face_info, controlnet_conditioning_scale=0.8
97
+ ... ).images[0]
98
+ ```
99
+ """
100
+
101
+ def bounding_rectangle(ori_img, mask):
102
+ """
103
+ Calculate the bounding rectangle of multiple rectangles.
104
+ Args:
105
+ rectangles (list of tuples): List of rectangles, where each rectangle is represented as (x, y, w, h)
106
+ Returns:
107
+ tuple: The bounding rectangle (x, y, w, h)
108
+ """
109
+ contours, _ = cv2.findContours(mask[:,:,0], cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
110
+ rectangles = [cv2.boundingRect(contour) for contour in contours]
111
+
112
+ min_x = float('inf')
113
+ min_y = float('inf')
114
+ max_x = float('-inf')
115
+ max_y = float('-inf')
116
+ for x, y, w, h in rectangles:
117
+ min_x = min(min_x, x)
118
+ min_y = min(min_y, y)
119
+ max_x = max(max_x, x + w)
120
+ max_y = max(max_y, y + h)
121
+ try:
122
+ crop = ori_img[min_y:max_y, min_x:max_x]
123
+ mask = mask[min_y:max_y, min_x:max_x]
124
+ except:
125
+ traceback.print_exc()
126
+ return crop, mask
127
+
128
+
129
+
130
+ class StableDiffusionXLStoryMakerPipeline(StableDiffusionXLPipeline):
131
+
132
+ def cuda(self, dtype=torch.float16, use_xformers=False):
133
+ self.to('cuda', dtype)
134
+ if hasattr(self, 'image_proj_model'):
135
+ self.image_proj_model.to(self.unet.device).to(self.unet.dtype)
136
+
137
+ def load_storymaker_adapter(self, image_encoder_path, model_ckpt, image_emb_dim=512, num_tokens=20, scale=0.8, lora_scale=0.8):
138
+ self.clip_image_processor = CLIPImageProcessor()
139
+ self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(image_encoder_path).to(self.device, dtype=self.dtype)
140
+ self.set_image_proj_model(model_ckpt, image_emb_dim, num_tokens)
141
+ self.set_ip_adapter(model_ckpt, num_tokens)
142
+ self.set_ip_adapter_scale(scale, lora_scale)
143
+ print(f'successful load adapter.')
144
+
145
+ def set_image_proj_model(self, model_ckpt, image_emb_dim=512, num_tokens=16):
146
+
147
+ image_proj_model = faceid_plus(
148
+ cross_attention_dim=self.unet.config.cross_attention_dim,
149
+ id_embeddings_dim=512,
150
+ clip_embeddings_dim=1280,
151
+ )
152
+ image_proj_model.eval()
153
+
154
+ self.image_proj_model = image_proj_model.to(self.device, dtype=self.dtype)
155
+ state_dict = torch.load(model_ckpt, map_location="cpu")
156
+ if 'image_proj_model' in state_dict:
157
+ state_dict = state_dict["image_proj_model"]
158
+ self.image_proj_model.load_state_dict(state_dict)
159
+
160
+ def set_ip_adapter(self, model_ckpt, num_tokens, lora_rank=128):
161
+
162
+ unet = self.unet
163
+ attn_procs = {}
164
+ for name in unet.attn_processors.keys():
165
+ cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
166
+ if name.startswith("mid_block"):
167
+ hidden_size = unet.config.block_out_channels[-1]
168
+ elif name.startswith("up_blocks"):
169
+ block_id = int(name[len("up_blocks.")])
170
+ hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
171
+ elif name.startswith("down_blocks"):
172
+ block_id = int(name[len("down_blocks.")])
173
+ hidden_size = unet.config.block_out_channels[block_id]
174
+ if cross_attention_dim is None:
175
+ attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=lora_rank).to(unet.device, dtype=unet.dtype)
176
+ else:
177
+ attn_procs[name] = LoRAIPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=lora_rank).to(unet.device, dtype=unet.dtype)
178
+ unet.set_attn_processor(attn_procs)
179
+
180
+ state_dict = torch.load(model_ckpt, map_location="cpu")
181
+ ip_layers = torch.nn.ModuleList(self.unet.attn_processors.values())
182
+ if 'ip_adapter' in state_dict:
183
+ state_dict = state_dict['ip_adapter']
184
+ ip_layers.load_state_dict(state_dict)
185
+
186
+ def set_ip_adapter_scale(self, scale, lora_scale=0.8):
187
+ unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
188
+ for attn_processor in unet.attn_processors.values():
189
+ if isinstance(attn_processor, LoRAIPAttnProcessor) or isinstance(attn_processor, LoRAAttnProcessor):
190
+ attn_processor.scale = scale
191
+ attn_processor.lora_scale = lora_scale
192
+
193
+ def crop_image(self, ori_img, ori_mask, face_info):
194
+ ori_img = np.array(ori_img)
195
+ ori_mask = np.array(ori_mask)
196
+ crop, mask = bounding_rectangle(ori_img, ori_mask)
197
+ mask = cv2.GaussianBlur(mask, (5, 5), 0)/255.
198
+ crop = (255*np.ones_like(mask)*(1-mask)+mask*crop).astype(np.uint8)
199
+ # cv2.imwrite('examples/results/0crop.jpg', crop[:,:,::-1])
200
+ # cv2.imwrite('examples/results/0mask.jpg', (mask*255).astype(np.uint8))
201
+
202
+ face_kps = face_info['kps']
203
+ # face_image = face_align.norm_crop(crop, landmark=face_kps.numpy(), image_size=224) # 224
204
+ face_image = face_align.norm_crop(ori_img, landmark=face_kps, image_size=224) # 224
205
+ clip_face = self.clip_image_processor(images=face_image, return_tensors="pt").pixel_values
206
+
207
+ ref_img = Image.fromarray(crop)
208
+ ref_img = ref_img.resize((224, 224))
209
+ clip_img = self.clip_image_processor(images=ref_img, return_tensors="pt").pixel_values
210
+ return clip_img, clip_face, torch.from_numpy(face_info.normed_embedding).unsqueeze(0)
211
+
212
+ def _encode_prompt_image_emb(self, image, image_2, mask_image, mask_image_2, face_info, face_info_2, cloth, cloth_2, \
213
+ device, num_images_per_prompt, dtype, do_classifier_free_guidance):
214
+ crop_list = []; face_list = []; id_list = []
215
+ if image is not None:
216
+ clip_img, clip_face, face_emb = self.crop_image(image, mask_image, face_info)
217
+ crop_list.append(clip_img)
218
+ face_list.append(clip_face)
219
+ id_list.append(face_emb)
220
+ if image_2 is not None:
221
+ clip_img, clip_face, face_emb = self.crop_image(image_2, mask_image_2, face_info_2)
222
+ crop_list.append(clip_img)
223
+ face_list.append(clip_face)
224
+ id_list.append(face_emb)
225
+ if cloth is not None:
226
+ crop_list = []
227
+ clip_img = self.clip_image_processor(images=cloth.resize((224, 224)), return_tensors="pt").pixel_values
228
+ crop_list.append(clip_img)
229
+ if cloth_2 is not None:
230
+ clip_img = self.clip_image_processor(images=cloth_2.resize((224, 224)), return_tensors="pt").pixel_values
231
+ crop_list.append(clip_img)
232
+ assert len(crop_list)>0, f"input error, images is None"
233
+ clip_image = torch.cat(crop_list, dim=0).to(device, dtype=dtype)
234
+ clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
235
+ clip_face = torch.cat(face_list, dim=0).to(device, dtype=dtype)
236
+ clip_face_embeds = self.image_encoder(clip_face, output_hidden_states=True).hidden_states[-2]
237
+ id_embeds = torch.cat(id_list, dim=0).to(device, dtype=dtype)
238
+ # print(f'clip_image_embeds: {clip_image_embeds.shape}, clip_face_embeds:{clip_face_embeds.shape}, id_embeds:{id_embeds.shape}')
239
+ if do_classifier_free_guidance:
240
+ prompt_image_emb = self.image_proj_model(id_embeds, clip_image_embeds, clip_face_embeds)
241
+ B, C, D = prompt_image_emb.shape
242
+ prompt_image_emb = prompt_image_emb.view(1, B*C, D)
243
+ neg_emb = self.image_proj_model(torch.zeros_like(id_embeds), torch.zeros_like(clip_image_embeds), torch.zeros_like(clip_face_embeds))
244
+ neg_emb = neg_emb.view(1, B*C, D)
245
+ prompt_image_emb = torch.cat([neg_emb, prompt_image_emb], dim=0)
246
+ else:
247
+ prompt_image_emb = torch.cat([prompt_image_emb], dim=0)
248
+ B, C, D = prompt_image_emb.shape
249
+ prompt_image_emb = prompt_image_emb.view(1, B*C, D)
250
+
251
+ # print(f'prompt_image_emb: {prompt_image_emb.shape}')
252
+ bs_embed, seq_len, _ = prompt_image_emb.shape
253
+ prompt_image_emb = prompt_image_emb.repeat(1, num_images_per_prompt, 1)
254
+ prompt_image_emb = prompt_image_emb.view(bs_embed * num_images_per_prompt, seq_len, -1)
255
+
256
+ return prompt_image_emb.to(device=device, dtype=dtype)
257
+
258
+ @torch.no_grad()
259
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
260
+ def __call__(
261
+ self,
262
+ prompt: Union[str, List[str]] = None,
263
+ prompt_2: Optional[Union[str, List[str]]] = None,
264
+ image: PipelineImageInput = None,
265
+ mask_image: Union[torch.Tensor, PIL.Image.Image] = None,
266
+ image_2: PipelineImageInput = None,
267
+ mask_image_2: Union[torch.Tensor, PIL.Image.Image] = None,
268
+ height: Optional[int] = None,
269
+ width: Optional[int] = None,
270
+ num_inference_steps: int = 50,
271
+ guidance_scale: float = 5.0,
272
+ negative_prompt: Optional[Union[str, List[str]]] = None,
273
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
274
+ num_images_per_prompt: Optional[int] = 1,
275
+ eta: float = 0.0,
276
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
277
+ latents: Optional[torch.FloatTensor] = None,
278
+ prompt_embeds: Optional[torch.FloatTensor] = None,
279
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
280
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
281
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
282
+ output_type: Optional[str] = "pil",
283
+ return_dict: bool = True,
284
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
285
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
286
+ guess_mode: bool = False,
287
+ control_guidance_start: Union[float, List[float]] = 0.0,
288
+ control_guidance_end: Union[float, List[float]] = 1.0,
289
+ original_size: Tuple[int, int] = None,
290
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
291
+ target_size: Tuple[int, int] = None,
292
+ negative_original_size: Optional[Tuple[int, int]] = None,
293
+ negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
294
+ negative_target_size: Optional[Tuple[int, int]] = None,
295
+ clip_skip: Optional[int] = None,
296
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
297
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
298
+
299
+ # IP adapter
300
+ ip_adapter_scale=None,
301
+ lora_scale=None,
302
+ face_info = None,
303
+ face_info_2 = None,
304
+ cloth = None,
305
+ cloth_2 = None,
306
+
307
+ **kwargs,
308
+ ):
309
+ r"""
310
+ The call function to the pipeline for generation.
311
+
312
+ Args:
313
+ prompt (`str` or `List[str]`, *optional*):
314
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
315
+ prompt_2 (`str` or `List[str]`, *optional*):
316
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
317
+ used in both text-encoders.
318
+ image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
319
+ `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
320
+ The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
321
+ specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
322
+ accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
323
+ and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
324
+ `init`, images must be passed as a list such that each element of the list can be correctly batched for
325
+ input to a single ControlNet.
326
+ height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
327
+ The height in pixels of the generated image. Anything below 512 pixels won't work well for
328
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
329
+ and checkpoints that are not specifically fine-tuned on low resolutions.
330
+ width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
331
+ The width in pixels of the generated image. Anything below 512 pixels won't work well for
332
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
333
+ and checkpoints that are not specifically fine-tuned on low resolutions.
334
+ num_inference_steps (`int`, *optional*, defaults to 50):
335
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
336
+ expense of slower inference.
337
+ guidance_scale (`float`, *optional*, defaults to 5.0):
338
+ A higher guidance scale value encourages the model to generate images closely linked to the text
339
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
340
+ negative_prompt (`str` or `List[str]`, *optional*):
341
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
342
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
343
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
344
+ The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
345
+ and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
346
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
347
+ The number of images to generate per prompt.
348
+ eta (`float`, *optional*, defaults to 0.0):
349
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
350
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
351
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
352
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
353
+ generation deterministic.
354
+ latents (`torch.FloatTensor`, *optional*):
355
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
356
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
357
+ tensor is generated by sampling using the supplied random `generator`.
358
+ prompt_embeds (`torch.FloatTensor`, *optional*):
359
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
360
+ provided, text embeddings are generated from the `prompt` input argument.
361
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
362
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
363
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
364
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
365
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
366
+ not provided, pooled text embeddings are generated from `prompt` input argument.
367
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
368
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
369
+ weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
370
+ argument.
371
+ output_type (`str`, *optional*, defaults to `"pil"`):
372
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
373
+ return_dict (`bool`, *optional*, defaults to `True`):
374
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
375
+ plain tuple.
376
+ cross_attention_kwargs (`dict`, *optional*):
377
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
378
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
379
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
380
+ The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
381
+ to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
382
+ the corresponding scale as a list.
383
+ guess_mode (`bool`, *optional*, defaults to `False`):
384
+ The ControlNet encoder tries to recognize the content of the input image even if you remove all
385
+ prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
386
+ control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
387
+ The percentage of total steps at which the ControlNet starts applying.
388
+ control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
389
+ The percentage of total steps at which the ControlNet stops applying.
390
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
391
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
392
+ `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
393
+ explained in section 2.2 of
394
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
395
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
396
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
397
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
398
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
399
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
400
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
401
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
402
+ not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
403
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
404
+ negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
405
+ To negatively condition the generation process based on a specific image resolution. Part of SDXL's
406
+ micro-conditioning as explained in section 2.2 of
407
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
408
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
409
+ negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
410
+ To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
411
+ micro-conditioning as explained in section 2.2 of
412
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
413
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
414
+ negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
415
+ To negatively condition the generation process based on a target image resolution. It should be as same
416
+ as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
417
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
418
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
419
+ clip_skip (`int`, *optional*):
420
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
421
+ the output of the pre-final layer will be used for computing the prompt embeddings.
422
+ callback_on_step_end (`Callable`, *optional*):
423
+ A function that calls at the end of each denoising steps during the inference. The function is called
424
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
425
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
426
+ `callback_on_step_end_tensor_inputs`.
427
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
428
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
429
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
430
+ `._callback_tensor_inputs` attribute of your pipeine class.
431
+
432
+ Examples:
433
+
434
+ Returns:
435
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
436
+ If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
437
+ otherwise a `tuple` is returned containing the output images.
438
+ """
439
+
440
+ callback = kwargs.pop("callback", None)
441
+ callback_steps = kwargs.pop("callback_steps", None)
442
+
443
+ if callback is not None:
444
+ deprecate(
445
+ "callback",
446
+ "1.0.0",
447
+ "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
448
+ )
449
+ if callback_steps is not None:
450
+ deprecate(
451
+ "callback_steps",
452
+ "1.0.0",
453
+ "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
454
+ )
455
+
456
+ # 0. set ip_adapter_scale
457
+ if ip_adapter_scale is not None and lora_scale is not None:
458
+ self.set_ip_adapter_scale(ip_adapter_scale, lora_scale)
459
+
460
+ # 1. Check inputs. Raise error if not correct
461
+ # self.check_inputs(
462
+ # prompt=prompt,
463
+ # prompt_2=prompt_2,
464
+ # height=height, width=width,
465
+ # callback_steps=callback_steps,
466
+ # negative_prompt=negative_prompt,
467
+ # negative_prompt_2=negative_prompt_2,
468
+ # prompt_embeds=prompt_embeds,
469
+ # negative_prompt_embeds=negative_prompt_embeds,
470
+ # pooled_prompt_embeds=pooled_prompt_embeds,
471
+ # negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
472
+ # callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
473
+ # )
474
+
475
+ self._guidance_scale = guidance_scale
476
+ self._clip_skip = clip_skip
477
+ self._cross_attention_kwargs = cross_attention_kwargs
478
+
479
+ # 2. Define call parameters
480
+ if prompt is not None and isinstance(prompt, str):
481
+ batch_size = 1
482
+ elif prompt is not None and isinstance(prompt, list):
483
+ batch_size = len(prompt)
484
+ else:
485
+ batch_size = prompt_embeds.shape[0]
486
+
487
+ device = self.unet.device
488
+ # pdb.set_trace()
489
+ # 3.1 Encode input prompt
490
+ text_encoder_lora_scale = (
491
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
492
+ )
493
+ (
494
+ prompt_embeds,
495
+ negative_prompt_embeds,
496
+ pooled_prompt_embeds,
497
+ negative_pooled_prompt_embeds,
498
+ ) = self.encode_prompt(
499
+ prompt,
500
+ prompt_2,
501
+ device,
502
+ num_images_per_prompt,
503
+ self.do_classifier_free_guidance,
504
+ negative_prompt,
505
+ negative_prompt_2,
506
+ prompt_embeds=prompt_embeds,
507
+ negative_prompt_embeds=negative_prompt_embeds,
508
+ pooled_prompt_embeds=pooled_prompt_embeds,
509
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
510
+ lora_scale=text_encoder_lora_scale,
511
+ clip_skip=self.clip_skip,
512
+ )
513
+
514
+ # 3.2 Encode image prompt
515
+ prompt_image_emb = self._encode_prompt_image_emb(image, image_2, mask_image, mask_image_2, face_info, face_info_2, cloth,cloth_2,
516
+ device, num_images_per_prompt,
517
+ self.unet.dtype, self.do_classifier_free_guidance)
518
+
519
+ # 5. Prepare timesteps
520
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
521
+ timesteps = self.scheduler.timesteps
522
+ self._num_timesteps = len(timesteps)
523
+
524
+ # 6. Prepare latent variables
525
+ num_channels_latents = self.unet.config.in_channels
526
+ latents = self.prepare_latents(
527
+ batch_size * num_images_per_prompt,
528
+ num_channels_latents,
529
+ height,
530
+ width,
531
+ prompt_embeds.dtype,
532
+ device,
533
+ generator,
534
+ latents,
535
+ )
536
+
537
+ # 6.5 Optionally get Guidance Scale Embedding
538
+ timestep_cond = None
539
+ if self.unet.config.time_cond_proj_dim is not None:
540
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
541
+ timestep_cond = self.get_guidance_scale_embedding(
542
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
543
+ ).to(device=device, dtype=latents.dtype)
544
+
545
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
546
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
547
+
548
+ # 7.2 Prepare added time ids & embeddings
549
+ original_size = original_size or (height, width)
550
+ target_size = target_size or (height, width)
551
+
552
+ add_text_embeds = pooled_prompt_embeds
553
+ if self.text_encoder_2 is None:
554
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
555
+ else:
556
+ text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
557
+
558
+ add_time_ids = self._get_add_time_ids(
559
+ original_size,
560
+ crops_coords_top_left,
561
+ target_size,
562
+ dtype=prompt_embeds.dtype,
563
+ text_encoder_projection_dim=text_encoder_projection_dim,
564
+ )
565
+
566
+ if negative_original_size is not None and negative_target_size is not None:
567
+ negative_add_time_ids = self._get_add_time_ids(
568
+ negative_original_size,
569
+ negative_crops_coords_top_left,
570
+ negative_target_size,
571
+ dtype=prompt_embeds.dtype,
572
+ text_encoder_projection_dim=text_encoder_projection_dim,
573
+ )
574
+ else:
575
+ negative_add_time_ids = add_time_ids
576
+
577
+ if self.do_classifier_free_guidance:
578
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
579
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
580
+ add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
581
+
582
+ prompt_embeds = prompt_embeds.to(device)
583
+ add_text_embeds = add_text_embeds.to(device)
584
+ add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
585
+ encoder_hidden_states = torch.cat([prompt_embeds, prompt_image_emb], dim=1)
586
+
587
+ # 8. Denoising loop
588
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
589
+ is_unet_compiled = is_compiled_module(self.unet)
590
+
591
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
592
+ for i, t in enumerate(timesteps):
593
+
594
+ # expand the latents if we are doing classifier free guidance
595
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
596
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
597
+
598
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
599
+
600
+ # predict the noise residual
601
+ noise_pred = self.unet(
602
+ latent_model_input,
603
+ t,
604
+ encoder_hidden_states=encoder_hidden_states,
605
+ timestep_cond=timestep_cond,
606
+ cross_attention_kwargs=self.cross_attention_kwargs,
607
+ added_cond_kwargs=added_cond_kwargs,
608
+ return_dict=False,
609
+ )[0]
610
+
611
+ # perform guidance
612
+ if self.do_classifier_free_guidance:
613
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
614
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
615
+
616
+ # compute the previous noisy sample x_t -> x_t-1
617
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
618
+
619
+ if callback_on_step_end is not None:
620
+ callback_kwargs = {}
621
+ for k in callback_on_step_end_tensor_inputs:
622
+ callback_kwargs[k] = locals()[k]
623
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
624
+
625
+ latents = callback_outputs.pop("latents", latents)
626
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
627
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
628
+
629
+ # call the callback, if provided
630
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
631
+ progress_bar.update()
632
+ if callback is not None and i % callback_steps == 0:
633
+ step_idx = i // getattr(self.scheduler, "order", 1)
634
+ callback(step_idx, t, latents)
635
+
636
+ if not output_type == "latent":
637
+ # make sure the VAE is in float32 mode, as it overflows in float16
638
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
639
+
640
+ if needs_upcasting:
641
+ self.upcast_vae()
642
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
643
+
644
+ # unscale/denormalize the latents
645
+ # denormalize with the mean and std if available and not None
646
+ has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
647
+ has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
648
+ if has_latents_mean and has_latents_std:
649
+ latents_mean = (
650
+ torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
651
+ )
652
+ latents_std = (
653
+ torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
654
+ )
655
+ latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
656
+ else:
657
+ latents = latents / self.vae.config.scaling_factor
658
+
659
+ image = self.vae.decode(latents, return_dict=False)[0]
660
+
661
+ # cast back to fp16 if needed
662
+ if needs_upcasting:
663
+ self.vae.to(dtype=torch.float16)
664
+ else:
665
+ image = latents
666
+
667
+ if not output_type == "latent":
668
+ # apply watermark if available
669
+ if self.watermark is not None:
670
+ image = self.watermark.apply_watermark(image)
671
+
672
+ image = self.image_processor.postprocess(image, output_type=output_type)
673
+
674
+ # Offload all models
675
+ self.maybe_free_model_hooks()
676
+
677
+ if not return_dict:
678
+ return (image,)
679
+
680
+ return StableDiffusionXLPipelineOutput(images=image)