REILX commited on
Commit
3f809a6
1 Parent(s): 0ee6204

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -3
README.md CHANGED
@@ -41,7 +41,6 @@ llava-Qwen2-7B-Instruct-Chinese-CLIP-v3 = Qwen/Qwen2-7B-Instruct + multi_modal_p
41
  - **数据集**: REILX/chinese-meme-description-dataset、SWHL/ChineseOCRBench、priyank-m/chinese_text_recognition、fly0331/ChineseTest、liuhaotian/LLaVA-Pretrain、Lin-Chen/ShareGPT4V
42
  - **微调参数**:
43
  - lora_r=32, lora_alpha=64, num_train_epochs=2, per_device_train_batch_size=1, gradient_accumulation_steps=8, high_lr=1e-3, low_lr=2e-5, model_max_length=2048
44
- - **设备**: 8 * A800
45
  - **训练时长**: 84小时02分钟
46
 
47
  ### 阶段2:
@@ -49,7 +48,6 @@ llava-Qwen2-7B-Instruct-Chinese-CLIP-v3 = Qwen/Qwen2-7B-Instruct + multi_modal_p
49
  - **数据集**: REILX/Chinese-Image-Text-Corpus-dataset
50
  - **微调参数**:
51
  - lora_r=32, lora_alpha=64, num_train_epochs=3, per_device_train_batch_size=1, gradient_accumulation_steps=8, high_lr=5e-4, low_lr=1e-5, model_max_length=2048
52
- - **设备**: 8 * A800
53
  - **训练时长**: 36小时56分钟
54
 
55
  ### 阶段3:
@@ -57,7 +55,6 @@ llava-Qwen2-7B-Instruct-Chinese-CLIP-v3 = Qwen/Qwen2-7B-Instruct + multi_modal_p
57
  - **数据集**: REILX/chinese-meme-description-dataset 中的 ChineseBQB-Claude-3-5-sonnet-20240620.jsonl 和 emo-visual-data-Claude-3-5-sonnet-20240620.jsonl,仅使用质量最高的 Claude-3-5-sonnet-20240620 模型输出进行最后的微调
58
  - **微调参数**:
59
  - lora_r=32, lora_alpha=64, num_train_epochs=3, per_device_train_batch_size=1, gradient_accumulation_steps=8, high_lr=5e-4, low_lr=1e-5, model_max_length=2048
60
- - **设备**: 8 * A800
61
  - **训练时长**: 1小时04分钟
62
 
63
  **3阶段共耗时**: 122小时
 
41
  - **数据集**: REILX/chinese-meme-description-dataset、SWHL/ChineseOCRBench、priyank-m/chinese_text_recognition、fly0331/ChineseTest、liuhaotian/LLaVA-Pretrain、Lin-Chen/ShareGPT4V
42
  - **微调参数**:
43
  - lora_r=32, lora_alpha=64, num_train_epochs=2, per_device_train_batch_size=1, gradient_accumulation_steps=8, high_lr=1e-3, low_lr=2e-5, model_max_length=2048
 
44
  - **训练时长**: 84小时02分钟
45
 
46
  ### 阶段2:
 
48
  - **数据集**: REILX/Chinese-Image-Text-Corpus-dataset
49
  - **微调参数**:
50
  - lora_r=32, lora_alpha=64, num_train_epochs=3, per_device_train_batch_size=1, gradient_accumulation_steps=8, high_lr=5e-4, low_lr=1e-5, model_max_length=2048
 
51
  - **训练时长**: 36小时56分钟
52
 
53
  ### 阶段3:
 
55
  - **数据集**: REILX/chinese-meme-description-dataset 中的 ChineseBQB-Claude-3-5-sonnet-20240620.jsonl 和 emo-visual-data-Claude-3-5-sonnet-20240620.jsonl,仅使用质量最高的 Claude-3-5-sonnet-20240620 模型输出进行最后的微调
56
  - **微调参数**:
57
  - lora_r=32, lora_alpha=64, num_train_epochs=3, per_device_train_batch_size=1, gradient_accumulation_steps=8, high_lr=5e-4, low_lr=1e-5, model_max_length=2048
 
58
  - **训练时长**: 1小时04分钟
59
 
60
  **3阶段共耗时**: 122小时