|
from typing import List |
|
|
|
from transformers import PretrainedConfig |
|
|
|
""" |
|
The configuration of a model is an object that |
|
will contain all the necessary information to build the model. |
|
|
|
The three important things to remember when writing you own configuration are the following: |
|
|
|
- you have to inherit from PretrainedConfig, |
|
- the __init__ of your PretrainedConfig must accept any kwargs, |
|
- those kwargs need to be passed to the superclass __init__. |
|
""" |
|
|
|
|
|
class ResnetConfig(PretrainedConfig): |
|
|
|
""" |
|
Defining a model_type for your configuration (here model_type="resnet") is not mandatory, |
|
unless you want to register your model with the auto classes (see last section).""" |
|
|
|
model_type = "rgbdsod-resnet" |
|
|
|
def __init__( |
|
self, |
|
block_type="bottleneck", |
|
layers: List[int] = [3, 4, 6, 3], |
|
num_classes: int = 1000, |
|
input_channels: int = 3, |
|
cardinality: int = 1, |
|
base_width: int = 64, |
|
stem_width: int = 64, |
|
stem_type: str = "", |
|
avg_down: bool = False, |
|
**kwargs, |
|
): |
|
if block_type not in ["basic", "bottleneck"]: |
|
raise ValueError( |
|
f"`block_type` must be 'basic' or bottleneck', got {block_type}." |
|
) |
|
if stem_type not in ["", "deep", "deep-tiered"]: |
|
raise ValueError( |
|
f"`stem_type` must be '', 'deep' or 'deep-tiered', got {stem_type}." |
|
) |
|
|
|
self.block_type = block_type |
|
self.layers = layers |
|
self.num_classes = num_classes |
|
self.input_channels = input_channels |
|
self.cardinality = cardinality |
|
self.base_width = base_width |
|
self.stem_width = stem_width |
|
self.stem_type = stem_type |
|
self.avg_down = avg_down |
|
super().__init__(**kwargs) |
|
|
|
|
|
if __name__ == "__main__": |
|
""" |
|
With this done, you can easily create and save your configuration like |
|
you would do with any other model config of the library. |
|
Here is how we can create a resnet50d config and save it: |
|
""" |
|
resnet50d_config = ResnetConfig( |
|
block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True |
|
) |
|
resnet50d_config.save_pretrained("custom-resnet") |
|
|
|
""" |
|
This will save a file named config.json inside the folder custom-resnet. |
|
You can then reload your config with the from_pretrained method: |
|
""" |
|
resnet50d_config = ResnetConfig.from_pretrained("custom-resnet") |
|
|
|
""" |
|
You can also use any other method of the PretrainedConfig class, |
|
like push_to_hub() to directly upload your config to the Hub. |
|
""" |
|
|