File size: 1,688 Bytes
1f0d519
358df4d
1f0d519
 
66f4b6a
6ed33f9
66f4b6a
6ed33f9
358df4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ed33f9
358df4d
 
 
 
 
 
 
 
 
6ed33f9
358df4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
library_name: transformers
license: apache-2.0
---

# Model card for MisterUkrainianDPO

DPO Iteration of [MisterUkrainian](https://huggingface.co/Radu1999/MisterUkrainian)


## Instruction format

In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens.

E.g.
```
text = "[INST]Відповідайте лише буквою правильної відповіді: Елементи експресіонізму наявні у творі: A. «Камінний хрест», B. «Інститутка», C. «Маруся», D. «Людина»[/INST]"
```

This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:

## Model Architecture
This instruction model is based on Mistral-7B-v0.2, a transformer model with the following architecture choices:
- Grouped-Query Attention
- Sliding-Window Attention
- Byte-fallback BPE tokenizer


## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Radu1999/MisterUkrainianDPO"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

## Author

Radu Chivereanu