File size: 4,003 Bytes
815a0a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66633eb
 
 
 
 
 
 
 
 
 
815a0a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66633eb
 
 
 
 
 
 
 
 
 
 
815a0a6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
base_model: dccuchile/bert-base-spanish-wwm-uncased
tags:
- generated_from_keras_callback
model-index:
- name: RafaelMayer/bert-copec-1
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# RafaelMayer/bert-copec-1

This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1258
- Validation Loss: 0.4666
- Train Accuracy: 0.7647
- Train Precision: [0.     0.8125]
- Train Precision W: 0.6691
- Train Recall: [0.         0.92857143]
- Train Recall W: 0.7647
- Train F1: [0.         0.86666667]
- Train F1 W: 0.7137
- Epoch: 9

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 35, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 5, 'power': 1.0, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Train Accuracy | Train Precision         | Train Precision W | Train Recall            | Train Recall W | Train F1                | Train F1 W | Epoch |
|:----------:|:---------------:|:--------------:|:-----------------------:|:-----------------:|:-----------------------:|:--------------:|:-----------------------:|:----------:|:-----:|
| 0.5926     | 0.4830          | 0.8235         | [0.         0.82352941] | 0.6782            | [0. 1.]                 | 0.8235         | [0.         0.90322581] | 0.7438     | 1     |
| 0.3224     | 0.5166          | 0.8235         | [0.         0.82352941] | 0.6782            | [0. 1.]                 | 0.8235         | [0.         0.90322581] | 0.7438     | 2     |
| 0.2419     | 0.6137          | 0.8235         | [0.         0.82352941] | 0.6782            | [0. 1.]                 | 0.8235         | [0.         0.90322581] | 0.7438     | 3     |
| 0.2583     | 0.5984          | 0.8235         | [0.         0.82352941] | 0.6782            | [0. 1.]                 | 0.8235         | [0.         0.90322581] | 0.7438     | 4     |
| 0.2308     | 0.5345          | 0.8235         | [0.         0.82352941] | 0.6782            | [0. 1.]                 | 0.8235         | [0.         0.90322581] | 0.7438     | 5     |
| 0.2178     | 0.4710          | 0.8235         | [0.         0.82352941] | 0.6782            | [0. 1.]                 | 0.8235         | [0.         0.90322581] | 0.7438     | 6     |
| 0.1861     | 0.4562          | 0.8235         | [0.         0.82352941] | 0.6782            | [0. 1.]                 | 0.8235         | [0.         0.90322581] | 0.7438     | 7     |
| 0.1456     | 0.4568          | 0.7647         | [0.     0.8125]         | 0.6691            | [0.         0.92857143] | 0.7647         | [0.         0.86666667] | 0.7137     | 8     |
| 0.1258     | 0.4666          | 0.7647         | [0.     0.8125]         | 0.6691            | [0.         0.92857143] | 0.7647         | [0.         0.86666667] | 0.7137     | 9     |


### Framework versions

- Transformers 4.32.1
- TensorFlow 2.12.0
- Datasets 2.14.4
- Tokenizers 0.13.3