Rai220 commited on
Commit
83652bb
1 Parent(s): c2c9e1d

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 276.95 +/- 16.75
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 244.79 +/- 15.78
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb03437dc20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb03437dcb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb03437dd40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb03437ddd0>", "_build": "<function ActorCriticPolicy._build at 0x7fb03437de60>", "forward": "<function ActorCriticPolicy.forward at 0x7fb03437def0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb03437df80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb034386050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb0343860e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb034386170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb034386200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb0343d32a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651738059.6572418, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACnOT0Kygq7CRPMuTUGlzy9KIw79Y2CvQAAgD8AAIA/gO7APW4pqz69bXK+bH54vkm2C71smxO8AAAAAAAAAACaW3a+yQj/Pv1Blz7aKcm+RBRlvEBYPj4AAAAAAAAAAM3wR7xI1ZO6jcP2MsqXSrEIrRm7ZkCMswAAgD8AAIA/GuNPvYV7w7kDBwA0Kxmqrlwz+rpYgJqzAACAPwAAgD8mAW++zy9oP7gRCj4U1wC/5vp5vg4C/D0AAAAAAAAAALM4GL2PtiO6oNFmOF8bvjPqkaq6ol2JtwAAgD8AAIA/mhlUu7YDGD3qPQ89YDCcvi44GD6gks+9AAAAAAAAAACaOQQ7JC0xP4K86D0X2ey+YUgXPUVchj0AAAAAAAAAAICxoD2zXDA/YOHCPHGb/75/M/U8UzOevQAAAAAAAAAAzQRavcm/HD1KzZo90kKGvoWe7j2Hhao7AAAAAAAAAACzmEy9LpvYPeFDvr0Zg4G+AVCsO0Cgbb0AAAAAAAAAAM37pzzh1oC6IphluZQJ2rQ1PP46dqyDOAAAgD8AAIA/Zo7XuxTgurolrL+311/Hsmc1BDk4cto2AACAPwAAgD9N3Vc9XCmhPyfhkj4bTxq/biCMPRrNrD0AAAAAAAAAAE2FIL7ELpE+FCmDPtUL0r4hs4A8gsNAPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIM4tQbIVWckCUhpRSlIwBbJRL6IwBdJRHQLMpvD/VAiV1fZQoaAZoCWgPQwgO2quPR9pxQJSGlFKUaBVL42gWR0CzKh+wX668dX2UKGgGaAloD0MIzQaZZKRXc0CUhpRSlGgVS+xoFkdAsyokTN+so3V9lChoBmgJaA9DCGXequtQAVhAlIaUUpRoFUupaBZHQLMqJFdszl91fZQoaAZoCWgPQwiZ02Uxsb9xQJSGlFKUaBVLw2gWR0CzKljVx0dSdX2UKGgGaAloD0MI3bHYJpWDckCUhpRSlGgVS/1oFkdAsypc+NcW03V9lChoBmgJaA9DCF9cqtKWzXBAlIaUUpRoFUvcaBZHQLMqYn752yN1fZQoaAZoCWgPQwjf4uE9B4dzQJSGlFKUaBVLw2gWR0CzKnFAeJYUdX2UKGgGaAloD0MItKz7xwIicUCUhpRSlGgVS9toFkdAsyqGWGATZnV9lChoBmgJaA9DCJ27XS/N/3BAlIaUUpRoFUvZaBZHQLMqjeANG3F1fZQoaAZoCWgPQwhMa9PY3plyQJSGlFKUaBVL2WgWR0CzKwUkv9LpdX2UKGgGaAloD0MIbAiOyzgJc0CUhpRSlGgVTRYBaBZHQLMrFd8Aq/d1fZQoaAZoCWgPQwjaIJOMHIRxQJSGlFKUaBVL0mgWR0CzKxmhysCDdX2UKGgGaAloD0MISmHe44x9c0CUhpRSlGgVTQIBaBZHQLMrVRWtEG91fZQoaAZoCWgPQwjh05y8yA5xQJSGlFKUaBVL3GgWR0CzK2wiRnvldX2UKGgGaAloD0MIRz1Eo/s3cUCUhpRSlGgVS/BoFkdAsyuOarmyPnV9lChoBmgJaA9DCIzZklXRcHFAlIaUUpRoFU0KAWgWR0CzK468L8aXdX2UKGgGaAloD0MIc6JdhRRkcUCUhpRSlGgVS85oFkdAsyv2EVWS2nV9lChoBmgJaA9DCAQ3UrbI3XJAlIaUUpRoFUv0aBZHQLMsC6GQCCB1fZQoaAZoCWgPQwjb4ET0a8RsQJSGlFKUaBVL8mgWR0CzLAx9gF5fdX2UKGgGaAloD0MIS+XtCCefcECUhpRSlGgVS9toFkdAsywb+98JD3V9lChoBmgJaA9DCLa/sz36kHFAlIaUUpRoFU0DAWgWR0CzLC6NlyzYdX2UKGgGaAloD0MISZwVURNtbUCUhpRSlGgVS+hoFkdAsywwrd30PHV9lChoBmgJaA9DCPWc9L7xSHNAlIaUUpRoFUvmaBZHQLMsQN0/4Zd1fZQoaAZoCWgPQwinzTgNUeZvQJSGlFKUaBVL7mgWR0CzLGYEW69TdX2UKGgGaAloD0MIyO2XT1YwcECUhpRSlGgVTQABaBZHQLMskTKDCgt1fZQoaAZoCWgPQwhdcAZ/v5xvQJSGlFKUaBVL3WgWR0CzLMM/+sHTdX2UKGgGaAloD0MImS1ZFSFicECUhpRSlGgVS9doFkdAsyzHkn1FpnV9lChoBmgJaA9DCIffTbesrnBAlIaUUpRoFUv3aBZHQLMtC32VVxV1fZQoaAZoCWgPQwjZfFwbKtBxQJSGlFKUaBVL2mgWR0CzLUSprDZUdX2UKGgGaAloD0MIz02bcRpUc0CUhpRSlGgVTQABaBZHQLMtXmeDnNh1fZQoaAZoCWgPQwidZKvLachwQJSGlFKUaBVNAQFoFkdAsy146JZW73V9lChoBmgJaA9DCOJ0kq1u1XBAlIaUUpRoFUv0aBZHQLMtf1B+nZV1fZQoaAZoCWgPQwhWndUCO9FwQJSGlFKUaBVL0WgWR0CzLdVefI0ZdX2UKGgGaAloD0MIVG6ilmb5cECUhpRSlGgVS+1oFkdAsy3t3mmtQ3V9lChoBmgJaA9DCEykNJvHNnBAlIaUUpRoFUveaBZHQLMt9I5YHPh1fZQoaAZoCWgPQwjvkGKAxCBxQJSGlFKUaBVL32gWR0CzLgl3Ux20dX2UKGgGaAloD0MIi4ujchOfckCUhpRSlGgVS/VoFkdAsy4PfVI7NnV9lChoBmgJaA9DCGWNeogGL3JAlIaUUpRoFU0XAWgWR0CzLkhyXD3udX2UKGgGaAloD0MItfrqqkBecUCUhpRSlGgVS+NoFkdAsy5w5ggHNXV9lChoBmgJaA9DCF6ezhUlp25AlIaUUpRoFU04AWgWR0CzLn7n9vS/dX2UKGgGaAloD0MIY5l+iXisckCUhpRSlGgVTQcBaBZHQLMujxFRYRx1fZQoaAZoCWgPQwjhJw6gH31wQJSGlFKUaBVL/WgWR0CzLt7Tc6/7dX2UKGgGaAloD0MIMxmO57Orc0CUhpRSlGgVS/9oFkdAsy7n1dxAB3V9lChoBmgJaA9DCCnMe5zpl3FAlIaUUpRoFUveaBZHQLMvJtv4ubt1fZQoaAZoCWgPQwibAMPyJ0JwQJSGlFKUaBVNCwFoFkdAsy9KpWFN+XV9lChoBmgJaA9DCEW7Cik/y29AlIaUUpRoFUvqaBZHQLMvWNipeeF1fZQoaAZoCWgPQwj4NCcvMiJvQJSGlFKUaBVL72gWR0CzL32/vfCRdX2UKGgGaAloD0MI19tmKgSscUCUhpRSlGgVS85oFkdAsy+xI7Njb3V9lChoBmgJaA9DCBXkZyMXxnFAlIaUUpRoFU0KAWgWR0CzL8A13t8edX2UKGgGaAloD0MINbVsre+mcECUhpRSlGgVS9hoFkdAsy/k0dilSHV9lChoBmgJaA9DCDum7souxXBAlIaUUpRoFUvhaBZHQLMv/Vkc0ch1fZQoaAZoCWgPQwi7D0BqUwRyQJSGlFKUaBVNCAFoFkdAszAYQOFxn3V9lChoBmgJaA9DCMUgsHLoM3JAlIaUUpRoFUv+aBZHQLMwILZBcA11fZQoaAZoCWgPQwgpQBTMWP5xQJSGlFKUaBVLyWgWR0CzMCZ0W/JvdX2UKGgGaAloD0MIeNMtO8SScUCUhpRSlGgVS+poFkdAszBEgxJumHV9lChoBmgJaA9DCBq/8EoSeXJAlIaUUpRoFUvdaBZHQLMwWB91EE11fZQoaAZoCWgPQwhvK702271xQJSGlFKUaBVL+GgWR0CzMJ7vXsgMdX2UKGgGaAloD0MIvcRYpt8Xc0CUhpRSlGgVS95oFkdAszC1pKzzE3V9lChoBmgJaA9DCORojqz8mXFAlIaUUpRoFUvRaBZHQLMxDlyzXz11fZQoaAZoCWgPQwgdxw+VxvlyQJSGlFKUaBVNDwFoFkdAszEkBq9GqnV9lChoBmgJaA9DCP6Bctu+83BAlIaUUpRoFUvraBZHQLMxOUaAFxJ1fZQoaAZoCWgPQwjzOuKQjWFzQJSGlFKUaBVL7WgWR0CzMXIZEUj+dX2UKGgGaAloD0MI7wG6L6e+cUCUhpRSlGgVTRwBaBZHQLMxggBtDUp1fZQoaAZoCWgPQwi0Vx8PvehwQJSGlFKUaBVL3mgWR0CzMYTG5tm+dX2UKGgGaAloD0MIueF3023YcUCUhpRSlGgVS9RoFkdAszG4mUnogXV9lChoBmgJaA9DCJGcTNyqem5AlIaUUpRoFUvwaBZHQLMx2c+aBqd1fZQoaAZoCWgPQwjeVKTCWIpyQJSGlFKUaBVL2WgWR0CzMeQR02cbdX2UKGgGaAloD0MI7bd2oqTkcUCUhpRSlGgVS+1oFkdAszIT/xUedXV9lChoBmgJaA9DCIJXy51ZaXJAlIaUUpRoFUvkaBZHQLMyIvb48EF1fZQoaAZoCWgPQwiF61G4Hk1zQJSGlFKUaBVL/2gWR0CzMiyGWUr1dX2UKGgGaAloD0MI6zpUU9KVckCUhpRSlGgVS/ZoFkdAszJa3DvVmXV9lChoBmgJaA9DCCDvVSuT6XFAlIaUUpRoFU1CAWgWR0CzMmB91EE1dX2UKGgGaAloD0MIG4S53YtgcECUhpRSlGgVS9BoFkdAszJsI6bONnV9lChoBmgJaA9DCDJyFvb0FnFAlIaUUpRoFUvuaBZHQLMykEv0yxl1fZQoaAZoCWgPQwhyjGSP0FFxQJSGlFKUaBVLx2gWR0CzMq0AxSHedX2UKGgGaAloD0MIFLLzNvZgcECUhpRSlGgVS9VoFkdAszLuQeV9nnV9lChoBmgJaA9DCPa2mQpxPm5AlIaUUpRoFUvRaBZHQLMzGEwWWQh1fZQoaAZoCWgPQwjH2XQE8H9yQJSGlFKUaBVL1GgWR0CzMzAFTvRadX2UKGgGaAloD0MI5neazLhpcUCUhpRSlGgVTQUBaBZHQLMzO/6O5rh1fZQoaAZoCWgPQwiEtwchIORtQJSGlFKUaBVL9WgWR0CzM3ObAk9mdX2UKGgGaAloD0MIRz6veKpEcECUhpRSlGgVS9xoFkdAszN1vybx3HV9lChoBmgJaA9DCAYrTrUWDm5AlIaUUpRoFUvKaBZHQLMzqwEQoTh1fZQoaAZoCWgPQwjgL2ZL1hJzQJSGlFKUaBVL5GgWR0CzM/I3WFvidX2UKGgGaAloD0MINgTHZdwPc0CUhpRSlGgVTRABaBZHQLM0BzEaVD91fZQoaAZoCWgPQwiLTwEw3vtxQJSGlFKUaBVNDgFoFkdAszQNz8xbjnV9lChoBmgJaA9DCF4wuObO/3BAlIaUUpRoFUvtaBZHQLM0EAmzByl1fZQoaAZoCWgPQwimnZrLDXZyQJSGlFKUaBVL8WgWR0CzNEtEgGKRdX2UKGgGaAloD0MIRIfAkQAScECUhpRSlGgVS/1oFkdAszRu9SMtLHV9lChoBmgJaA9DCKFHjJ4b8XJAlIaUUpRoFU0QAWgWR0CzNIkGmk30dX2UKGgGaAloD0MIC0J5H0dCckCUhpRSlGgVS/ZoFkdAszSqPRzBAXV9lChoBmgJaA9DCO6vHvetq3FAlIaUUpRoFUvlaBZHQLM0zvo/zJ91fZQoaAZoCWgPQwgq5Eo9C9xzQJSGlFKUaBVNIAFoFkdAszTkbKifx3V9lChoBmgJaA9DCF4robskjm1AlIaUUpRoFUvTaBZHQLM0+ZXMhX91fZQoaAZoCWgPQwjzcW2omA1wQJSGlFKUaBVL42gWR0CzNQ5tSAH3dX2UKGgGaAloD0MIPkLNkOqGcECUhpRSlGgVS9ZoFkdAszUzUTcqOXV9lChoBmgJaA9DCOYGQx2WCHFAlIaUUpRoFU0VAWgWR0CzNV0sFt9AdX2UKGgGaAloD0MI2V4Lem8sbkCUhpRSlGgVS9poFkdAszV043m3fHV9lChoBmgJaA9DCHmUSniCyHBAlIaUUpRoFUv1aBZHQLM1d5xiobZ1fZQoaAZoCWgPQwiwyoXKPylxQJSGlFKUaBVL5mgWR0CzNe66reZYdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 184, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcb4abc0b00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcb4abc0b90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcb4abc0c20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcb4abc0cb0>", "_build": "<function ActorCriticPolicy._build at 0x7fcb4abc0d40>", "forward": "<function ActorCriticPolicy.forward at 0x7fcb4abc0dd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcb4abc0e60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcb4abc0ef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcb4abc0f80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcb4ab46050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcb4ab460e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcb4ab8e6c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651821153.6593404, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYmn7qSEHc/xGHIPXUnpr7Uw2Y8LZ4zPQAAAAAAAAAAU2Ivvpy6gD82SKG+NTfavuYncL6ctwE9AAAAAAAAAAAzF/u8XJMzul/nNzRkyZEtCLxjufY3p7MAAIA/AACAPwAw1rpIi4a6+7T+OzT+JjYQE5W6kF0dNQAAgD8AAIA/TRSpvdR5uLwCAT89vnQ7PU7mrT2NsWu7AAAAAAAAgD8mi4A9e5SQugBdYbocSlK1j7f5OmaogjkAAIA/AACAPzNgPT30rYI/ONiyvXaIr74PUo09y/SNvQAAAAAAAAAAzQb2vRzDQ7zQ9K09NBlcPS9LPD3gPpI8AACAPwAAgD8AaMG7w/U4NepdxjoHOlg2ANmoOss+77kAAIA/AACAP2qIuD7YXmw/DQGpPoIXdr7ZQrs+OuolOwAAAAAAAAAAmsqEvVzcCLyUdoc7LuAUPEbUaL1CZgU9AACAPwAAgD/mCNi9XJ8GukS8SD3TxaUy0SXvuwIVizEAAIA/AAAAANqS4L32PA+6nYn8t+9L5bKPA7C64u8WNwAAgD8AAAAAzSgSvdTK8j0Yy+k9ihplvrkJNj10TxE9AAAAAAAAAAAzNJU8pLIzPAJ8sTuMHE6+wgByvEqKc70AAAAAAAAAAAAAGb3R12c+wnymPJpeRb6ww6W8HENJvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIR8oWSbuzZECUhpRSlIwBbJRN6AOMAXSUR0CVRdYpUgjhdX2UKGgGaAloD0MIovDZOrh5ZECUhpRSlGgVTegDaBZHQJVJjtCzC1t1fZQoaAZoCWgPQwinBS/6SrpxQJSGlFKUaBVNfgJoFkdAlUz2FFlTWHV9lChoBmgJaA9DCGCt2jWhm3FAlIaUUpRoFU1HAWgWR0CVTa7gsK9gdX2UKGgGaAloD0MISL99HXhucECUhpRSlGgVTZABaBZHQJVRXLKV6eJ1fZQoaAZoCWgPQwh95qxPuXFwQJSGlFKUaBVNeANoFkdAlVOKmwaBJHV9lChoBmgJaA9DCIl7LH3o/2JAlIaUUpRoFU3oA2gWR0CVWS1Vo6CEdX2UKGgGaAloD0MIo1pEFJNhZkCUhpRSlGgVTegDaBZHQJVZLqQiiZh1fZQoaAZoCWgPQwi1+X/VkVJwQJSGlFKUaBVNfwFoFkdAlVrF6eGwinV9lChoBmgJaA9DCCJQ/YPIiW5AlIaUUpRoFU1AA2gWR0CVXWP1ct5EdX2UKGgGaAloD0MI0jQomoejaECUhpRSlGgVTegDaBZHQJVdxPJq7Ad1fZQoaAZoCWgPQwh2U8prJU9xQJSGlFKUaBVNmwNoFkdAlV4xiTdLx3V9lChoBmgJaA9DCJq1FJD2lHFAlIaUUpRoFU1nAWgWR0CVYZO5J9RadX2UKGgGaAloD0MIOsssQvG+cECUhpRSlGgVTWsBaBZHQJViasp5NXZ1fZQoaAZoCWgPQwhiMepae9RvQJSGlFKUaBVNOgJoFkdAlWRajFhod3V9lChoBmgJaA9DCNttF5prgXBAlIaUUpRoFU1pAWgWR0CVZaAmAskIdX2UKGgGaAloD0MICBwJNJjXckCUhpRSlGgVTU8BaBZHQJVmLStvGZN1fZQoaAZoCWgPQwiSByKLtOlhQJSGlFKUaBVN6ANoFkdAlWnIWxhUi3V9lChoBmgJaA9DCC0ly0loRHJAlIaUUpRoFU1SAmgWR0CVaw5U96kZdX2UKGgGaAloD0MIoE/kSVLoZUCUhpRSlGgVTegDaBZHQJVxnAFgUlB1fZQoaAZoCWgPQwitvyUAfwJkQJSGlFKUaBVN6ANoFkdAlXSruQZGa3V9lChoBmgJaA9DCHb+7bLf1G5AlIaUUpRoFU1HAWgWR0CVdbxEv0yydX2UKGgGaAloD0MIbhea63QscUCUhpRSlGgVTfoBaBZHQJV73wlSjxl1fZQoaAZoCWgPQwj2Q2ywcLtxQJSGlFKUaBVNYAJoFkdAlX1jUmUnonV9lChoBmgJaA9DCGCQ9GkVhGNAlIaUUpRoFU3oA2gWR0CVncWyC4BndX2UKGgGaAloD0MIT3Yzox/8cUCUhpRSlGgVTYgBaBZHQJWfJMEidJ91fZQoaAZoCWgPQwhIjJ5b6EhIQJSGlFKUaBVL5mgWR0CVn7bsniNsdX2UKGgGaAloD0MIryKjAxKYbkCUhpRSlGgVTQ4CaBZHQJWioCV8kUt1fZQoaAZoCWgPQwgmAWpq2bBxQJSGlFKUaBVNwgJoFkdAlaQCLQ5WBHV9lChoBmgJaA9DCGh4swbvrm9AlIaUUpRoFU0GAmgWR0CVqDCOWBz4dX2UKGgGaAloD0MIHAx1WGEKcUCUhpRSlGgVTWsDaBZHQJWrjFo+Ofd1fZQoaAZoCWgPQwiYMQVrnANLQJSGlFKUaBVNBwFoFkdAla9//rB0p3V9lChoBmgJaA9DCE2jycUY929AlIaUUpRoFU3wAWgWR0CVsVosI3R5dX2UKGgGaAloD0MI66nVV5dGckCUhpRSlGgVTfcCaBZHQJWx7pljEvV1fZQoaAZoCWgPQwjWyK60DFFiQJSGlFKUaBVN6ANoFkdAlbH/cvduYXV9lChoBmgJaA9DCOp5NxaUCW1AlIaUUpRoFU1BAWgWR0CVsg90ihWYdX2UKGgGaAloD0MIkNjuHiDWcUCUhpRSlGgVTYEDaBZHQJW0khzNliB1fZQoaAZoCWgPQwhpxqLpbGdvQJSGlFKUaBVNcwJoFkdAlbVbrLQokXV9lChoBmgJaA9DCNJxNbKrO2RAlIaUUpRoFU3oA2gWR0CVtqJCSidrdX2UKGgGaAloD0MIGJmAXyPwcECUhpRSlGgVTQgBaBZHQJW34TewcHZ1fZQoaAZoCWgPQwj1ZtR8VYdxQJSGlFKUaBVNowFoFkdAlbiPlU6xPnV9lChoBmgJaA9DCBGmKJfGiUlAlIaUUpRoFUv2aBZHQJW5gC+10DF1fZQoaAZoCWgPQwhHADeLV/JxQJSGlFKUaBVNlgFoFkdAlbs6+N96TnV9lChoBmgJaA9DCJmbb0R3R2RAlIaUUpRoFU3oA2gWR0CVvCijtXxOdX2UKGgGaAloD0MIxvfFpaoQcUCUhpRSlGgVTegBaBZHQJW+JmWdEst1fZQoaAZoCWgPQwih2AqaVkpxQJSGlFKUaBVNcwFoFkdAlcMZmRNh3XV9lChoBmgJaA9DCBy2LcrsAXJAlIaUUpRoFU0pAWgWR0CVw76Skj5cdX2UKGgGaAloD0MIELBW7Vp0cUCUhpRSlGgVTWIBaBZHQJXEVAt4A0d1fZQoaAZoCWgPQwjsbTMVYqNxQJSGlFKUaBVNMwFoFkdAlcUmecx0uHV9lChoBmgJaA9DCMU8K2lF+GxAlIaUUpRoFU2QAWgWR0CVxt4Glhw3dX2UKGgGaAloD0MIfGRz1Xw3cECUhpRSlGgVTYcBaBZHQJXNYywfQrt1fZQoaAZoCWgPQwjwxKwXA9ByQJSGlFKUaBVNSgFoFkdAlc4JA2Q4j3V9lChoBmgJaA9DCAPuef40EmRAlIaUUpRoFU3oA2gWR0CV0oqJuVHGdX2UKGgGaAloD0MIluoCXuYGYkCUhpRSlGgVTegDaBZHQJXUBw97ngZ1fZQoaAZoCWgPQwiowwq3/GVwQJSGlFKUaBVNFwJoFkdAldTnljmSyXV9lChoBmgJaA9DCJC+SdNg/3FAlIaUUpRoFU1LAWgWR0CV2OLk0aZQdX2UKGgGaAloD0MIZan1fuO4cECUhpRSlGgVTT4CaBZHQJX05mI0qH51fZQoaAZoCWgPQwiRYKqZNQVvQJSGlFKUaBVNLAJoFkdAlfUHg5zYEnV9lChoBmgJaA9DCGFUUicgk29AlIaUUpRoFU3TAmgWR0CV9ZANXo1UdX2UKGgGaAloD0MIyhmKO95Yb0CUhpRSlGgVTYEBaBZHQJX33kOqebx1fZQoaAZoCWgPQwjCvp1EhDtxQJSGlFKUaBVN4QFoFkdAlfswF9roGXV9lChoBmgJaA9DCF4R/G+lp3BAlIaUUpRoFU1zAmgWR0CV/AvXbuc+dX2UKGgGaAloD0MIU+dR8f/GbUCUhpRSlGgVTe4BaBZHQJX8ci4axX51fZQoaAZoCWgPQwhgrG9g8nhyQJSGlFKUaBVNXAFoFkdAlf0Wll9SdnV9lChoBmgJaA9DCCIzF7i8ymxAlIaUUpRoFU1eA2gWR0CV/Y3KSxJNdX2UKGgGaAloD0MI8rVnlsS+cUCUhpRSlGgVTWYBaBZHQJX+ACMglnh1fZQoaAZoCWgPQwj8qfHSzR1vQJSGlFKUaBVN6wFoFkdAlf7Vog3cYnV9lChoBmgJaA9DCCMShZb1SG9AlIaUUpRoFU0yAWgWR0CV/uGI9C/odX2UKGgGaAloD0MIOLwgIvW+cUCUhpRSlGgVTWMBaBZHQJYCBJyyUs51fZQoaAZoCWgPQwhxVG6iltdwQJSGlFKUaBVNSQFoFkdAlgSf2TPjXHV9lChoBmgJaA9DCJTcYRMZdXBAlIaUUpRoFU04AWgWR0CWBSGff4yodX2UKGgGaAloD0MI+BdBYyYtckCUhpRSlGgVTUoBaBZHQJYFdq20AtF1fZQoaAZoCWgPQwg2lUVhl4VxQJSGlFKUaBVNuQFoFkdAlgcJblijL3V9lChoBmgJaA9DCKUuGcfIFG5AlIaUUpRoFU2GAWgWR0CWCJVNHpbEdX2UKGgGaAloD0MISpuqe2SFcECUhpRSlGgVTR4BaBZHQJYI8G+sYEZ1fZQoaAZoCWgPQwjMRuf8FPlEQJSGlFKUaBVNAwFoFkdAlgncspXp4nV9lChoBmgJaA9DCHhBRGqaNHFAlIaUUpRoFU1VAWgWR0CWDExptaZAdX2UKGgGaAloD0MI8IXJVEGccECUhpRSlGgVTVIBaBZHQJYMieGwiaB1fZQoaAZoCWgPQwgGZRpNbolyQJSGlFKUaBVNXAFoFkdAlg96iTMaCXV9lChoBmgJaA9DCLq7zob8WWlAlIaUUpRoFU3oA2gWR0CWD7Xw9aEBdX2UKGgGaAloD0MIHjaRmUtGcUCUhpRSlGgVTYgBaBZHQJYPx6cAiml1fZQoaAZoCWgPQwjB49u7RvNwQJSGlFKUaBVNeAFoFkdAlhC2kFfReHV9lChoBmgJaA9DCOPFwhA5/SRAlIaUUpRoFUvnaBZHQJYTZs0pEx91fZQoaAZoCWgPQwiCc0aUNrlwQJSGlFKUaBVNOQFoFkdAlhQDnq3VkXV9lChoBmgJaA9DCFhYcD/gwXFAlIaUUpRoFU02AWgWR0CWFC5OafBfdX2UKGgGaAloD0MIpP56hQXJcECUhpRSlGgVTdkBaBZHQJYUUrPMSsd1fZQoaAZoCWgPQwiwyoXK/0pxQJSGlFKUaBVNjgFoFkdAlhTxnJ1aGHV9lChoBmgJaA9DCNIcWfllSXBAlIaUUpRoFU1NAWgWR0CWFmaNuLrHdX2UKGgGaAloD0MIaD7nbleJbUCUhpRSlGgVTYYBaBZHQJYWyqJdjXp1fZQoaAZoCWgPQwhihzHpb3twQJSGlFKUaBVNRAFoFkdAlhhhtUGVzXV9lChoBmgJaA9DCO8AT1q4w29AlIaUUpRoFU0mAWgWR0CWGUJSR8txdX2UKGgGaAloD0MIaxDmdi/KcECUhpRSlGgVTXwBaBZHQJYZ4CV8kUt1fZQoaAZoCWgPQwh3vTRFAEhwQJSGlFKUaBVN2gJoFkdAlhn6jSG8EnV9lChoBmgJaA9DCGmPF9Lh73JAlIaUUpRoFU05AWgWR0CWGjdY4hlldX2UKGgGaAloD0MINWJmn8czbkCUhpRSlGgVTS8BaBZHQJYcafjCHh11fZQoaAZoCWgPQwh2xYzw9nw/QJSGlFKUaBVL1GgWR0CWHL6ab4JvdX2UKGgGaAloD0MIdxIR/oW/ckCUhpRSlGgVTUwBaBZHQJYhgGNaQmx1fZQoaAZoCWgPQwhAEvbtZFxwQJSGlFKUaBVNjgFoFkdAliHtAPd2xXV9lChoBmgJaA9DCPP/qiOHGXFAlIaUUpRoFU2sAWgWR0CWIkMl1KXfdX2UKGgGaAloD0MId2fttovWcECUhpRSlGgVTVkBaBZHQJYiy49X9zh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
lunar-test.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b52b7ed55333d3902faac27aa1cffad4e59bdb9e27c84eb5949b49eef72e8993
3
- size 144010
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c1b9ef06fd59ad3ae23d200279385dfdc8818cf30c2a7cfc68a86b5d2685650
3
+ size 144046
lunar-test/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb03437dc20>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb03437dcb0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb03437dd40>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb03437ddd0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fb03437de60>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fb03437def0>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb03437df80>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7fb034386050>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb0343860e0>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb034386170>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb034386200>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7fb0343d32a0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -42,12 +42,12 @@
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
- "num_timesteps": 1507328,
46
- "_total_timesteps": 1500000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1651738059.6572418,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,7 +56,7 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACnOT0Kygq7CRPMuTUGlzy9KIw79Y2CvQAAgD8AAIA/gO7APW4pqz69bXK+bH54vkm2C71smxO8AAAAAAAAAACaW3a+yQj/Pv1Blz7aKcm+RBRlvEBYPj4AAAAAAAAAAM3wR7xI1ZO6jcP2MsqXSrEIrRm7ZkCMswAAgD8AAIA/GuNPvYV7w7kDBwA0Kxmqrlwz+rpYgJqzAACAPwAAgD8mAW++zy9oP7gRCj4U1wC/5vp5vg4C/D0AAAAAAAAAALM4GL2PtiO6oNFmOF8bvjPqkaq6ol2JtwAAgD8AAIA/mhlUu7YDGD3qPQ89YDCcvi44GD6gks+9AAAAAAAAAACaOQQ7JC0xP4K86D0X2ey+YUgXPUVchj0AAAAAAAAAAICxoD2zXDA/YOHCPHGb/75/M/U8UzOevQAAAAAAAAAAzQRavcm/HD1KzZo90kKGvoWe7j2Hhao7AAAAAAAAAACzmEy9LpvYPeFDvr0Zg4G+AVCsO0Cgbb0AAAAAAAAAAM37pzzh1oC6IphluZQJ2rQ1PP46dqyDOAAAgD8AAIA/Zo7XuxTgurolrL+311/Hsmc1BDk4cto2AACAPwAAgD9N3Vc9XCmhPyfhkj4bTxq/biCMPRrNrD0AAAAAAAAAAE2FIL7ELpE+FCmDPtUL0r4hs4A8gsNAPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,17 +66,17 @@
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.004885333333333408,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVMxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIM4tQbIVWckCUhpRSlIwBbJRL6IwBdJRHQLMpvD/VAiV1fZQoaAZoCWgPQwgO2quPR9pxQJSGlFKUaBVL42gWR0CzKh+wX668dX2UKGgGaAloD0MIzQaZZKRXc0CUhpRSlGgVS+xoFkdAsyokTN+so3V9lChoBmgJaA9DCGXequtQAVhAlIaUUpRoFUupaBZHQLMqJFdszl91fZQoaAZoCWgPQwiZ02Uxsb9xQJSGlFKUaBVLw2gWR0CzKljVx0dSdX2UKGgGaAloD0MI3bHYJpWDckCUhpRSlGgVS/1oFkdAsypc+NcW03V9lChoBmgJaA9DCF9cqtKWzXBAlIaUUpRoFUvcaBZHQLMqYn752yN1fZQoaAZoCWgPQwjf4uE9B4dzQJSGlFKUaBVLw2gWR0CzKnFAeJYUdX2UKGgGaAloD0MItKz7xwIicUCUhpRSlGgVS9toFkdAsyqGWGATZnV9lChoBmgJaA9DCJ27XS/N/3BAlIaUUpRoFUvZaBZHQLMqjeANG3F1fZQoaAZoCWgPQwhMa9PY3plyQJSGlFKUaBVL2WgWR0CzKwUkv9LpdX2UKGgGaAloD0MIbAiOyzgJc0CUhpRSlGgVTRYBaBZHQLMrFd8Aq/d1fZQoaAZoCWgPQwjaIJOMHIRxQJSGlFKUaBVL0mgWR0CzKxmhysCDdX2UKGgGaAloD0MISmHe44x9c0CUhpRSlGgVTQIBaBZHQLMrVRWtEG91fZQoaAZoCWgPQwjh05y8yA5xQJSGlFKUaBVL3GgWR0CzK2wiRnvldX2UKGgGaAloD0MIRz1Eo/s3cUCUhpRSlGgVS/BoFkdAsyuOarmyPnV9lChoBmgJaA9DCIzZklXRcHFAlIaUUpRoFU0KAWgWR0CzK468L8aXdX2UKGgGaAloD0MIc6JdhRRkcUCUhpRSlGgVS85oFkdAsyv2EVWS2nV9lChoBmgJaA9DCAQ3UrbI3XJAlIaUUpRoFUv0aBZHQLMsC6GQCCB1fZQoaAZoCWgPQwjb4ET0a8RsQJSGlFKUaBVL8mgWR0CzLAx9gF5fdX2UKGgGaAloD0MIS+XtCCefcECUhpRSlGgVS9toFkdAsywb+98JD3V9lChoBmgJaA9DCLa/sz36kHFAlIaUUpRoFU0DAWgWR0CzLC6NlyzYdX2UKGgGaAloD0MISZwVURNtbUCUhpRSlGgVS+hoFkdAsywwrd30PHV9lChoBmgJaA9DCPWc9L7xSHNAlIaUUpRoFUvmaBZHQLMsQN0/4Zd1fZQoaAZoCWgPQwinzTgNUeZvQJSGlFKUaBVL7mgWR0CzLGYEW69TdX2UKGgGaAloD0MIyO2XT1YwcECUhpRSlGgVTQABaBZHQLMskTKDCgt1fZQoaAZoCWgPQwhdcAZ/v5xvQJSGlFKUaBVL3WgWR0CzLMM/+sHTdX2UKGgGaAloD0MImS1ZFSFicECUhpRSlGgVS9doFkdAsyzHkn1FpnV9lChoBmgJaA9DCIffTbesrnBAlIaUUpRoFUv3aBZHQLMtC32VVxV1fZQoaAZoCWgPQwjZfFwbKtBxQJSGlFKUaBVL2mgWR0CzLUSprDZUdX2UKGgGaAloD0MIz02bcRpUc0CUhpRSlGgVTQABaBZHQLMtXmeDnNh1fZQoaAZoCWgPQwidZKvLachwQJSGlFKUaBVNAQFoFkdAsy146JZW73V9lChoBmgJaA9DCOJ0kq1u1XBAlIaUUpRoFUv0aBZHQLMtf1B+nZV1fZQoaAZoCWgPQwhWndUCO9FwQJSGlFKUaBVL0WgWR0CzLdVefI0ZdX2UKGgGaAloD0MIVG6ilmb5cECUhpRSlGgVS+1oFkdAsy3t3mmtQ3V9lChoBmgJaA9DCEykNJvHNnBAlIaUUpRoFUveaBZHQLMt9I5YHPh1fZQoaAZoCWgPQwjvkGKAxCBxQJSGlFKUaBVL32gWR0CzLgl3Ux20dX2UKGgGaAloD0MIi4ujchOfckCUhpRSlGgVS/VoFkdAsy4PfVI7NnV9lChoBmgJaA9DCGWNeogGL3JAlIaUUpRoFU0XAWgWR0CzLkhyXD3udX2UKGgGaAloD0MItfrqqkBecUCUhpRSlGgVS+NoFkdAsy5w5ggHNXV9lChoBmgJaA9DCF6ezhUlp25AlIaUUpRoFU04AWgWR0CzLn7n9vS/dX2UKGgGaAloD0MIY5l+iXisckCUhpRSlGgVTQcBaBZHQLMujxFRYRx1fZQoaAZoCWgPQwjhJw6gH31wQJSGlFKUaBVL/WgWR0CzLt7Tc6/7dX2UKGgGaAloD0MIMxmO57Orc0CUhpRSlGgVS/9oFkdAsy7n1dxAB3V9lChoBmgJaA9DCCnMe5zpl3FAlIaUUpRoFUveaBZHQLMvJtv4ubt1fZQoaAZoCWgPQwibAMPyJ0JwQJSGlFKUaBVNCwFoFkdAsy9KpWFN+XV9lChoBmgJaA9DCEW7Cik/y29AlIaUUpRoFUvqaBZHQLMvWNipeeF1fZQoaAZoCWgPQwj4NCcvMiJvQJSGlFKUaBVL72gWR0CzL32/vfCRdX2UKGgGaAloD0MI19tmKgSscUCUhpRSlGgVS85oFkdAsy+xI7Njb3V9lChoBmgJaA9DCBXkZyMXxnFAlIaUUpRoFU0KAWgWR0CzL8A13t8edX2UKGgGaAloD0MINbVsre+mcECUhpRSlGgVS9hoFkdAsy/k0dilSHV9lChoBmgJaA9DCDum7souxXBAlIaUUpRoFUvhaBZHQLMv/Vkc0ch1fZQoaAZoCWgPQwi7D0BqUwRyQJSGlFKUaBVNCAFoFkdAszAYQOFxn3V9lChoBmgJaA9DCMUgsHLoM3JAlIaUUpRoFUv+aBZHQLMwILZBcA11fZQoaAZoCWgPQwgpQBTMWP5xQJSGlFKUaBVLyWgWR0CzMCZ0W/JvdX2UKGgGaAloD0MIeNMtO8SScUCUhpRSlGgVS+poFkdAszBEgxJumHV9lChoBmgJaA9DCBq/8EoSeXJAlIaUUpRoFUvdaBZHQLMwWB91EE11fZQoaAZoCWgPQwhvK702271xQJSGlFKUaBVL+GgWR0CzMJ7vXsgMdX2UKGgGaAloD0MIvcRYpt8Xc0CUhpRSlGgVS95oFkdAszC1pKzzE3V9lChoBmgJaA9DCORojqz8mXFAlIaUUpRoFUvRaBZHQLMxDlyzXz11fZQoaAZoCWgPQwgdxw+VxvlyQJSGlFKUaBVNDwFoFkdAszEkBq9GqnV9lChoBmgJaA9DCP6Bctu+83BAlIaUUpRoFUvraBZHQLMxOUaAFxJ1fZQoaAZoCWgPQwjzOuKQjWFzQJSGlFKUaBVL7WgWR0CzMXIZEUj+dX2UKGgGaAloD0MI7wG6L6e+cUCUhpRSlGgVTRwBaBZHQLMxggBtDUp1fZQoaAZoCWgPQwi0Vx8PvehwQJSGlFKUaBVL3mgWR0CzMYTG5tm+dX2UKGgGaAloD0MIueF3023YcUCUhpRSlGgVS9RoFkdAszG4mUnogXV9lChoBmgJaA9DCJGcTNyqem5AlIaUUpRoFUvwaBZHQLMx2c+aBqd1fZQoaAZoCWgPQwjeVKTCWIpyQJSGlFKUaBVL2WgWR0CzMeQR02cbdX2UKGgGaAloD0MI7bd2oqTkcUCUhpRSlGgVS+1oFkdAszIT/xUedXV9lChoBmgJaA9DCIJXy51ZaXJAlIaUUpRoFUvkaBZHQLMyIvb48EF1fZQoaAZoCWgPQwiF61G4Hk1zQJSGlFKUaBVL/2gWR0CzMiyGWUr1dX2UKGgGaAloD0MI6zpUU9KVckCUhpRSlGgVS/ZoFkdAszJa3DvVmXV9lChoBmgJaA9DCCDvVSuT6XFAlIaUUpRoFU1CAWgWR0CzMmB91EE1dX2UKGgGaAloD0MIG4S53YtgcECUhpRSlGgVS9BoFkdAszJsI6bONnV9lChoBmgJaA9DCDJyFvb0FnFAlIaUUpRoFUvuaBZHQLMykEv0yxl1fZQoaAZoCWgPQwhyjGSP0FFxQJSGlFKUaBVLx2gWR0CzMq0AxSHedX2UKGgGaAloD0MIFLLzNvZgcECUhpRSlGgVS9VoFkdAszLuQeV9nnV9lChoBmgJaA9DCPa2mQpxPm5AlIaUUpRoFUvRaBZHQLMzGEwWWQh1fZQoaAZoCWgPQwjH2XQE8H9yQJSGlFKUaBVL1GgWR0CzMzAFTvRadX2UKGgGaAloD0MI5neazLhpcUCUhpRSlGgVTQUBaBZHQLMzO/6O5rh1fZQoaAZoCWgPQwiEtwchIORtQJSGlFKUaBVL9WgWR0CzM3ObAk9mdX2UKGgGaAloD0MIRz6veKpEcECUhpRSlGgVS9xoFkdAszN1vybx3HV9lChoBmgJaA9DCAYrTrUWDm5AlIaUUpRoFUvKaBZHQLMzqwEQoTh1fZQoaAZoCWgPQwjgL2ZL1hJzQJSGlFKUaBVL5GgWR0CzM/I3WFvidX2UKGgGaAloD0MINgTHZdwPc0CUhpRSlGgVTRABaBZHQLM0BzEaVD91fZQoaAZoCWgPQwiLTwEw3vtxQJSGlFKUaBVNDgFoFkdAszQNz8xbjnV9lChoBmgJaA9DCF4wuObO/3BAlIaUUpRoFUvtaBZHQLM0EAmzByl1fZQoaAZoCWgPQwimnZrLDXZyQJSGlFKUaBVL8WgWR0CzNEtEgGKRdX2UKGgGaAloD0MIRIfAkQAScECUhpRSlGgVS/1oFkdAszRu9SMtLHV9lChoBmgJaA9DCKFHjJ4b8XJAlIaUUpRoFU0QAWgWR0CzNIkGmk30dX2UKGgGaAloD0MIC0J5H0dCckCUhpRSlGgVS/ZoFkdAszSqPRzBAXV9lChoBmgJaA9DCO6vHvetq3FAlIaUUpRoFUvlaBZHQLM0zvo/zJ91fZQoaAZoCWgPQwgq5Eo9C9xzQJSGlFKUaBVNIAFoFkdAszTkbKifx3V9lChoBmgJaA9DCF4robskjm1AlIaUUpRoFUvTaBZHQLM0+ZXMhX91fZQoaAZoCWgPQwjzcW2omA1wQJSGlFKUaBVL42gWR0CzNQ5tSAH3dX2UKGgGaAloD0MIPkLNkOqGcECUhpRSlGgVS9ZoFkdAszUzUTcqOXV9lChoBmgJaA9DCOYGQx2WCHFAlIaUUpRoFU0VAWgWR0CzNV0sFt9AdX2UKGgGaAloD0MI2V4Lem8sbkCUhpRSlGgVS9poFkdAszV043m3fHV9lChoBmgJaA9DCHmUSniCyHBAlIaUUpRoFUv1aBZHQLM1d5xiobZ1fZQoaAZoCWgPQwiwyoXKPylxQJSGlFKUaBVL5mgWR0CzNe66reZYdWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 184,
79
- "n_steps": 2048,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
82
  "ent_coef": 0.01,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcb4abc0b00>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcb4abc0b90>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcb4abc0c20>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcb4abc0cb0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fcb4abc0d40>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fcb4abc0dd0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcb4abc0e60>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fcb4abc0ef0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcb4abc0f80>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcb4ab46050>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcb4ab460e0>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fcb4ab8e6c0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
 
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1651821153.6593404,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYmn7qSEHc/xGHIPXUnpr7Uw2Y8LZ4zPQAAAAAAAAAAU2Ivvpy6gD82SKG+NTfavuYncL6ctwE9AAAAAAAAAAAzF/u8XJMzul/nNzRkyZEtCLxjufY3p7MAAIA/AACAPwAw1rpIi4a6+7T+OzT+JjYQE5W6kF0dNQAAgD8AAIA/TRSpvdR5uLwCAT89vnQ7PU7mrT2NsWu7AAAAAAAAgD8mi4A9e5SQugBdYbocSlK1j7f5OmaogjkAAIA/AACAPzNgPT30rYI/ONiyvXaIr74PUo09y/SNvQAAAAAAAAAAzQb2vRzDQ7zQ9K09NBlcPS9LPD3gPpI8AACAPwAAgD8AaMG7w/U4NepdxjoHOlg2ANmoOss+77kAAIA/AACAP2qIuD7YXmw/DQGpPoIXdr7ZQrs+OuolOwAAAAAAAAAAmsqEvVzcCLyUdoc7LuAUPEbUaL1CZgU9AACAPwAAgD/mCNi9XJ8GukS8SD3TxaUy0SXvuwIVizEAAIA/AAAAANqS4L32PA+6nYn8t+9L5bKPA7C64u8WNwAAgD8AAAAAzSgSvdTK8j0Yy+k9ihplvrkJNj10TxE9AAAAAAAAAAAzNJU8pLIzPAJ8sTuMHE6+wgByvEqKc70AAAAAAAAAAAAAGb3R12c+wnymPJpeRb6ww6W8HENJvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIR8oWSbuzZECUhpRSlIwBbJRN6AOMAXSUR0CVRdYpUgjhdX2UKGgGaAloD0MIovDZOrh5ZECUhpRSlGgVTegDaBZHQJVJjtCzC1t1fZQoaAZoCWgPQwinBS/6SrpxQJSGlFKUaBVNfgJoFkdAlUz2FFlTWHV9lChoBmgJaA9DCGCt2jWhm3FAlIaUUpRoFU1HAWgWR0CVTa7gsK9gdX2UKGgGaAloD0MISL99HXhucECUhpRSlGgVTZABaBZHQJVRXLKV6eJ1fZQoaAZoCWgPQwh95qxPuXFwQJSGlFKUaBVNeANoFkdAlVOKmwaBJHV9lChoBmgJaA9DCIl7LH3o/2JAlIaUUpRoFU3oA2gWR0CVWS1Vo6CEdX2UKGgGaAloD0MIo1pEFJNhZkCUhpRSlGgVTegDaBZHQJVZLqQiiZh1fZQoaAZoCWgPQwi1+X/VkVJwQJSGlFKUaBVNfwFoFkdAlVrF6eGwinV9lChoBmgJaA9DCCJQ/YPIiW5AlIaUUpRoFU1AA2gWR0CVXWP1ct5EdX2UKGgGaAloD0MI0jQomoejaECUhpRSlGgVTegDaBZHQJVdxPJq7Ad1fZQoaAZoCWgPQwh2U8prJU9xQJSGlFKUaBVNmwNoFkdAlV4xiTdLx3V9lChoBmgJaA9DCJq1FJD2lHFAlIaUUpRoFU1nAWgWR0CVYZO5J9RadX2UKGgGaAloD0MIOsssQvG+cECUhpRSlGgVTWsBaBZHQJViasp5NXZ1fZQoaAZoCWgPQwhiMepae9RvQJSGlFKUaBVNOgJoFkdAlWRajFhod3V9lChoBmgJaA9DCNttF5prgXBAlIaUUpRoFU1pAWgWR0CVZaAmAskIdX2UKGgGaAloD0MICBwJNJjXckCUhpRSlGgVTU8BaBZHQJVmLStvGZN1fZQoaAZoCWgPQwiSByKLtOlhQJSGlFKUaBVN6ANoFkdAlWnIWxhUi3V9lChoBmgJaA9DCC0ly0loRHJAlIaUUpRoFU1SAmgWR0CVaw5U96kZdX2UKGgGaAloD0MIoE/kSVLoZUCUhpRSlGgVTegDaBZHQJVxnAFgUlB1fZQoaAZoCWgPQwitvyUAfwJkQJSGlFKUaBVN6ANoFkdAlXSruQZGa3V9lChoBmgJaA9DCHb+7bLf1G5AlIaUUpRoFU1HAWgWR0CVdbxEv0yydX2UKGgGaAloD0MIbhea63QscUCUhpRSlGgVTfoBaBZHQJV73wlSjxl1fZQoaAZoCWgPQwj2Q2ywcLtxQJSGlFKUaBVNYAJoFkdAlX1jUmUnonV9lChoBmgJaA9DCGCQ9GkVhGNAlIaUUpRoFU3oA2gWR0CVncWyC4BndX2UKGgGaAloD0MIT3Yzox/8cUCUhpRSlGgVTYgBaBZHQJWfJMEidJ91fZQoaAZoCWgPQwhIjJ5b6EhIQJSGlFKUaBVL5mgWR0CVn7bsniNsdX2UKGgGaAloD0MIryKjAxKYbkCUhpRSlGgVTQ4CaBZHQJWioCV8kUt1fZQoaAZoCWgPQwgmAWpq2bBxQJSGlFKUaBVNwgJoFkdAlaQCLQ5WBHV9lChoBmgJaA9DCGh4swbvrm9AlIaUUpRoFU0GAmgWR0CVqDCOWBz4dX2UKGgGaAloD0MIHAx1WGEKcUCUhpRSlGgVTWsDaBZHQJWrjFo+Ofd1fZQoaAZoCWgPQwiYMQVrnANLQJSGlFKUaBVNBwFoFkdAla9//rB0p3V9lChoBmgJaA9DCE2jycUY929AlIaUUpRoFU3wAWgWR0CVsVosI3R5dX2UKGgGaAloD0MI66nVV5dGckCUhpRSlGgVTfcCaBZHQJWx7pljEvV1fZQoaAZoCWgPQwjWyK60DFFiQJSGlFKUaBVN6ANoFkdAlbH/cvduYXV9lChoBmgJaA9DCOp5NxaUCW1AlIaUUpRoFU1BAWgWR0CVsg90ihWYdX2UKGgGaAloD0MIkNjuHiDWcUCUhpRSlGgVTYEDaBZHQJW0khzNliB1fZQoaAZoCWgPQwhpxqLpbGdvQJSGlFKUaBVNcwJoFkdAlbVbrLQokXV9lChoBmgJaA9DCNJxNbKrO2RAlIaUUpRoFU3oA2gWR0CVtqJCSidrdX2UKGgGaAloD0MIGJmAXyPwcECUhpRSlGgVTQgBaBZHQJW34TewcHZ1fZQoaAZoCWgPQwj1ZtR8VYdxQJSGlFKUaBVNowFoFkdAlbiPlU6xPnV9lChoBmgJaA9DCBGmKJfGiUlAlIaUUpRoFUv2aBZHQJW5gC+10DF1fZQoaAZoCWgPQwhHADeLV/JxQJSGlFKUaBVNlgFoFkdAlbs6+N96TnV9lChoBmgJaA9DCJmbb0R3R2RAlIaUUpRoFU3oA2gWR0CVvCijtXxOdX2UKGgGaAloD0MIxvfFpaoQcUCUhpRSlGgVTegBaBZHQJW+JmWdEst1fZQoaAZoCWgPQwih2AqaVkpxQJSGlFKUaBVNcwFoFkdAlcMZmRNh3XV9lChoBmgJaA9DCBy2LcrsAXJAlIaUUpRoFU0pAWgWR0CVw76Skj5cdX2UKGgGaAloD0MIELBW7Vp0cUCUhpRSlGgVTWIBaBZHQJXEVAt4A0d1fZQoaAZoCWgPQwjsbTMVYqNxQJSGlFKUaBVNMwFoFkdAlcUmecx0uHV9lChoBmgJaA9DCMU8K2lF+GxAlIaUUpRoFU2QAWgWR0CVxt4Glhw3dX2UKGgGaAloD0MIfGRz1Xw3cECUhpRSlGgVTYcBaBZHQJXNYywfQrt1fZQoaAZoCWgPQwjwxKwXA9ByQJSGlFKUaBVNSgFoFkdAlc4JA2Q4j3V9lChoBmgJaA9DCAPuef40EmRAlIaUUpRoFU3oA2gWR0CV0oqJuVHGdX2UKGgGaAloD0MIluoCXuYGYkCUhpRSlGgVTegDaBZHQJXUBw97ngZ1fZQoaAZoCWgPQwiowwq3/GVwQJSGlFKUaBVNFwJoFkdAldTnljmSyXV9lChoBmgJaA9DCJC+SdNg/3FAlIaUUpRoFU1LAWgWR0CV2OLk0aZQdX2UKGgGaAloD0MIZan1fuO4cECUhpRSlGgVTT4CaBZHQJX05mI0qH51fZQoaAZoCWgPQwiRYKqZNQVvQJSGlFKUaBVNLAJoFkdAlfUHg5zYEnV9lChoBmgJaA9DCGFUUicgk29AlIaUUpRoFU3TAmgWR0CV9ZANXo1UdX2UKGgGaAloD0MIyhmKO95Yb0CUhpRSlGgVTYEBaBZHQJX33kOqebx1fZQoaAZoCWgPQwjCvp1EhDtxQJSGlFKUaBVN4QFoFkdAlfswF9roGXV9lChoBmgJaA9DCF4R/G+lp3BAlIaUUpRoFU1zAmgWR0CV/AvXbuc+dX2UKGgGaAloD0MIU+dR8f/GbUCUhpRSlGgVTe4BaBZHQJX8ci4axX51fZQoaAZoCWgPQwhgrG9g8nhyQJSGlFKUaBVNXAFoFkdAlf0Wll9SdnV9lChoBmgJaA9DCCIzF7i8ymxAlIaUUpRoFU1eA2gWR0CV/Y3KSxJNdX2UKGgGaAloD0MI8rVnlsS+cUCUhpRSlGgVTWYBaBZHQJX+ACMglnh1fZQoaAZoCWgPQwj8qfHSzR1vQJSGlFKUaBVN6wFoFkdAlf7Vog3cYnV9lChoBmgJaA9DCCMShZb1SG9AlIaUUpRoFU0yAWgWR0CV/uGI9C/odX2UKGgGaAloD0MIOLwgIvW+cUCUhpRSlGgVTWMBaBZHQJYCBJyyUs51fZQoaAZoCWgPQwhxVG6iltdwQJSGlFKUaBVNSQFoFkdAlgSf2TPjXHV9lChoBmgJaA9DCJTcYRMZdXBAlIaUUpRoFU04AWgWR0CWBSGff4yodX2UKGgGaAloD0MI+BdBYyYtckCUhpRSlGgVTUoBaBZHQJYFdq20AtF1fZQoaAZoCWgPQwg2lUVhl4VxQJSGlFKUaBVNuQFoFkdAlgcJblijL3V9lChoBmgJaA9DCKUuGcfIFG5AlIaUUpRoFU2GAWgWR0CWCJVNHpbEdX2UKGgGaAloD0MISpuqe2SFcECUhpRSlGgVTR4BaBZHQJYI8G+sYEZ1fZQoaAZoCWgPQwjMRuf8FPlEQJSGlFKUaBVNAwFoFkdAlgncspXp4nV9lChoBmgJaA9DCHhBRGqaNHFAlIaUUpRoFU1VAWgWR0CWDExptaZAdX2UKGgGaAloD0MI8IXJVEGccECUhpRSlGgVTVIBaBZHQJYMieGwiaB1fZQoaAZoCWgPQwgGZRpNbolyQJSGlFKUaBVNXAFoFkdAlg96iTMaCXV9lChoBmgJaA9DCLq7zob8WWlAlIaUUpRoFU3oA2gWR0CWD7Xw9aEBdX2UKGgGaAloD0MIHjaRmUtGcUCUhpRSlGgVTYgBaBZHQJYPx6cAiml1fZQoaAZoCWgPQwjB49u7RvNwQJSGlFKUaBVNeAFoFkdAlhC2kFfReHV9lChoBmgJaA9DCOPFwhA5/SRAlIaUUpRoFUvnaBZHQJYTZs0pEx91fZQoaAZoCWgPQwiCc0aUNrlwQJSGlFKUaBVNOQFoFkdAlhQDnq3VkXV9lChoBmgJaA9DCFhYcD/gwXFAlIaUUpRoFU02AWgWR0CWFC5OafBfdX2UKGgGaAloD0MIpP56hQXJcECUhpRSlGgVTdkBaBZHQJYUUrPMSsd1fZQoaAZoCWgPQwiwyoXK/0pxQJSGlFKUaBVNjgFoFkdAlhTxnJ1aGHV9lChoBmgJaA9DCNIcWfllSXBAlIaUUpRoFU1NAWgWR0CWFmaNuLrHdX2UKGgGaAloD0MIaD7nbleJbUCUhpRSlGgVTYYBaBZHQJYWyqJdjXp1fZQoaAZoCWgPQwhihzHpb3twQJSGlFKUaBVNRAFoFkdAlhhhtUGVzXV9lChoBmgJaA9DCO8AT1q4w29AlIaUUpRoFU0mAWgWR0CWGUJSR8txdX2UKGgGaAloD0MIaxDmdi/KcECUhpRSlGgVTXwBaBZHQJYZ4CV8kUt1fZQoaAZoCWgPQwh3vTRFAEhwQJSGlFKUaBVN2gJoFkdAlhn6jSG8EnV9lChoBmgJaA9DCGmPF9Lh73JAlIaUUpRoFU05AWgWR0CWGjdY4hlldX2UKGgGaAloD0MINWJmn8czbkCUhpRSlGgVTS8BaBZHQJYcafjCHh11fZQoaAZoCWgPQwh2xYzw9nw/QJSGlFKUaBVL1GgWR0CWHL6ab4JvdX2UKGgGaAloD0MIdxIR/oW/ckCUhpRSlGgVTUwBaBZHQJYhgGNaQmx1fZQoaAZoCWgPQwhAEvbtZFxwQJSGlFKUaBVNjgFoFkdAliHtAPd2xXV9lChoBmgJaA9DCPP/qiOHGXFAlIaUUpRoFU2sAWgWR0CWIkMl1KXfdX2UKGgGaAloD0MId2fttovWcECUhpRSlGgVTVkBaBZHQJYiy49X9zh1ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
82
  "ent_coef": 0.01,
lunar-test/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e5d8603442582cd76f569e0ef16b64da1578bd5fb54dcc409768081048df5c26
3
- size 84893
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b0ab3404ed7acfd26e5eb01c4dd59780d758d636045f10c0a18362a77cd1d90
3
+ size 84829
lunar-test/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d17db4e28efd741ee0e1a670854ab74460c93c94d944578b5e471a001243e1d0
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:621c8a4432b6d94e6759553674fa4e99ef85f551587015c108ec3813ab67db8d
3
  size 43201
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8f11f456264690e55e1ff6e356ddf709f19d3bb4d5ef12f16ebb5ddb07b067cf
3
- size 222199
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ecc38dbb8e4454d24235d5df86667fb8fa8628089bdc4c07e31a242ff41198e
3
+ size 224576
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 276.9459063296819, "std_reward": 16.75049514683271, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T08:42:07.881527"}
 
1
+ {"mean_reward": 244.79314268622565, "std_reward": 15.777718107917428, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T07:37:07.484566"}