RajMoodley commited on
Commit
716957d
1 Parent(s): 9df0af4

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1228.21 +/- 287.62
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a57e3086f45ccad736b928818a143dc13141c264dceffcc5db3d3eba16f580dc
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fafb09241f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fafb0924280>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fafb0924310>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fafb09243a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fafb0924430>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fafb09244c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fafb0924550>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fafb09245e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fafb0924670>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fafb0924700>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fafb0924790>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fafb0924820>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fafb091e960>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674027358199396635,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOmEkb8XX+w+h98uP4WZN7/JvgE/9uRpPVqtKz8EOIU9gxkrv5z/Bb0Tspu+uXdHPfuBEr9YLbm94ZE6Pv8P9j2GgwQ/QcsRvt2mij8jCJE98Kp9vx/XfD2qMD2/Wqk+vAlBEj9XVMs+TUIAP1XTTD/Kh8A+bVhdP9HHNz8keUdA0iWOv5oUkD/GV5e/1hBKvtHS3L8Gy3Y84qz7vfVDJ0DVyga/XUAgPh1jYT8ul9M8KIeiP7cFHsD1UMG/cV6cvsyfPD9XZQzA5nO6P1kxAkBqDOC/V1TLPk1CAD9V00w/D4MFQB/WGj/E6TQ/FFBLv1Khzj6Z8pzAoJtbv6XlWj2Fad6/SM7/PV1EEMAaY5c/xR1SvnyckT9ztgw/PzggwO5yUz8PesE/ozyLP7UWGr8gzxI/Ph12Pqo8ij+9hblAagzgvzsoIcCqe/+/5fqfv9MOhj/dwgA+McITP8SF8D+fuCXA9+bOP2arhb+EMQa+6AmVv1hQLj8Z+90+ozoBP9Brrr+izDU/3w8VP9+wqj8OS/G+UYijwIygHsBqFvM+gkSAv6dhlL8sShRAwvIcvglBEj87KCHATUIAP1XTTD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADhsTy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/6MhPQAAAABNk/i/AAAAAPE69L0AAAAA5+75PwAAAABVV/67AAAAAMmB4D8AAAAAx7MmvQAAAAB14/i/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTAoNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgK497z0AAAAAzDfvvwAAAAA/46k9AAAAALOa2T8AAAAA6QiiPQAAAABMBts/AAAAAPWTcL0AAAAAT/DnvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADiXQjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBeddy9AAAAACn89L8AAAAAcRdRvQAAAACu6ts/AAAAAMYoVL0AAAAA2t7vPwAAAADaWfS9AAAAAN+f8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADk1hY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAV17PvAAAAACWa+6/AAAAACo7vj0AAAAApmnhPwAAAADNfdq9AAAAAKzz2D8AAAAAQAK4vQAAAABrDO2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJh67ViF0xOMAWyUTegDjAF0lEdAqV5jA8B+4XV9lChoBkdAl9St8eCCjGgHTegDaAhHQKlgke1a4c51fZQoaAZHQJRapYhdMTNoB03oA2gIR0CpYyXNke6qdX2UKGgGR0CXuhnEVFhHaAdN6ANoCEdAqWohJmNBGHV9lChoBkdAmHrAztTkyWgHTegDaAhHQKlqyXkYGdJ1fZQoaAZHQJd63IGQjlhoB03oA2gIR0CpbRdsJpnIdX2UKGgGR0CTnEyU9pyqaAdN6ANoCEdAqW+42Kl54XV9lChoBkdAle2REWqLj2gHTegDaAhHQKl21fdAPd51fZQoaAZHQJaAmDoQnQZoB03oA2gIR0Cpd3/keZG8dX2UKGgGR0CVQk40dilSaAdN6ANoCEdAqXm5avA443V9lChoBkdAk+funIhhY2gHTegDaAhHQKl8XNmlImR1fZQoaAZHQJdd9Jd0JWxoB03oA2gIR0Cpg2z1schldX2UKGgGR0CT7pFrEcbSaAdN6ANoCEdAqYQa+SKWLXV9lChoBkdAmNABMewLVmgHTegDaAhHQKmGVxlQMx51fZQoaAZHQJonlE7W/ahoB03oA2gIR0CpiOjv3JxOdX2UKGgGR0CXQQwXZXdTaAdN6ANoCEdAqZADvXsgMnV9lChoBkdAlYEPcFhXsGgHTegDaAhHQKmQq9AX2uh1fZQoaAZHQJKtscS5AhVoB03oA2gIR0CpkvZ4nndPdX2UKGgGR0CaTcWgezUraAdN6ANoCEdAqZWKy8jAz3V9lChoBkdAmbfrPD50sGgHTegDaAhHQKmcimEXcg11fZQoaAZHQJfYXSsr/bVoB03oA2gIR0CpnTL1uivgdX2UKGgGR0CaJ60Dlo12aAdN6ANoCEdAqZ9kZ9/jKnV9lChoBkdAmNaeK8+Ro2gHTegDaAhHQKmh/BE8aGZ1fZQoaAZHQJhoVkz41xdoB03oA2gIR0CpqT+CTUy6dX2UKGgGR0CWqrZHNHH4aAdN6ANoCEdAqanoEnssx3V9lChoBkdAmYwygwoLHGgHTegDaAhHQKmsIwW3z+Z1fZQoaAZHQJi8TtpmEoRoB03oA2gIR0CprsuDBdledX2UKGgGR0CYtSkTHsC1aAdN6ANoCEdAqbX0gEEDAHV9lChoBkdAmO6ehsZYP2gHTegDaAhHQKm2m7KaG6B1fZQoaAZHQJkTMifQKKJoB03oA2gIR0CpuOf5DZ13dX2UKGgGR0CaC7D9OymiaAdN6ANoCEdAqbuVk1/DtXV9lChoBkdAm7SrBGhEjWgHTegDaAhHQKnCu/mDDj11fZQoaAZHQJyqhLvkRz1oB03oA2gIR0Cpw2VsUIszdX2UKGgGR0CbqmNt65XmaAdN6ANoCEdAqcWnNNahYnV9lChoBkdAnGYz9sJpnGgHTegDaAhHQKnISRbr1NB1fZQoaAZHQJpljkn1FphoB03oA2gIR0Cpz0pqREF4dX2UKGgGR0Ca6Gon8baRaAdN6ANoCEdAqc/0s189fXV9lChoBkdAl00xsANoamgHTegDaAhHQKnSQS/0ulJ1fZQoaAZHQJmYc2OyVwBoB03oA2gIR0Cp1N1lPJq7dX2UKGgGR0CXJPRywOe8aAdN6ANoCEdAqdvu29cry3V9lChoBkdAmcASbQTmGWgHTegDaAhHQKncl6+nIhh1fZQoaAZHQJi4cS/TLGJoB03oA2gIR0Cp3tFUQ04zdX2UKGgGR0CYbs9bX6InaAdN6ANoCEdAqeFaHO8kEHV9lChoBkdAmSMs7QswtmgHTegDaAhHQKnothlUZNx1fZQoaAZHQJOam/0ulGhoB03oA2gIR0Cp6V+l9BrvdX2UKGgGR0CXu0s3yZrpaAdN6ANoCEdAqeuQYaYNRXV9lChoBkdAl3SPjGT9sWgHTegDaAhHQKnuQd7OVxF1fZQoaAZHQJTYu1LJ0XBoB03oA2gIR0Cp9VmOMl1KdX2UKGgGR0CZsNMURFqjaAdN6ANoCEdAqfYAre67NHV9lChoBkdAmNWW7voeP2gHTegDaAhHQKn4TMN+b3J1fZQoaAZHQJkusMz/IbRoB03oA2gIR0Cp+tPUKArhdX2UKGgGR0CcMAIJqqOtaAdN6ANoCEdAqgHSJTER8XV9lChoBkdAmdwsh9srNGgHTegDaAhHQKoCe2YOUdJ1fZQoaAZHQJi1HT+ee4FoB03oA2gIR0CqBNkrPMSsdX2UKGgGR0CYc8mOEM9baAdN6ANoCEdAqgdkFKTSs3V9lChoBkdAk9gbRa5f+mgHTegDaAhHQKoOqJZW7vp1fZQoaAZHQJpy256MR6FoB03oA2gIR0CqD05eqrBCdX2UKGgGR0CeXjNu+AVgaAdN6ANoCEdAqhGaLZSNwXV9lChoBkdAjQCLiuMdcWgHTegDaAhHQKoUMSwnpjd1fZQoaAZHQJlrHpHI6sBoB03oA2gIR0CqG3MZHd43dX2UKGgGR0CbsPVnVXmvaAdN6ANoCEdAqhwdzySV4XV9lChoBkdAmgNh/ustCmgHTegDaAhHQKoeYKUFB6d1fZQoaAZHQJkBYPVd5Y5oB03oA2gIR0CqIQHuRcNZdX2UKGgGR0CXA3GATZg5aAdN6ANoCEdAqigy3w1BMXV9lChoBkdAlFKPBFd9lWgHTegDaAhHQKoo3Tz/ZNB1fZQoaAZHQJXck3AEdNpoB03oA2gIR0CqKzD94u9OdX2UKGgGR0CSKaPKMefaaAdN6ANoCEdAqi37pHI6sHV9lChoBkdAk2J/GyX2NGgHTegDaAhHQKo1M20AtFt1fZQoaAZHQJNAm6cy31BoB03oA2gIR0CqNeQFs54odX2UKGgGR0CPzwGY8dPtaAdN6ANoCEdAqjg9fAsTWXV9lChoBkdAjwLk87p3YGgHTegDaAhHQKo68RmK64F1fZQoaAZHQJjC5Q79ycVoB03oA2gIR0CqQk/GVAzIdX2UKGgGR0Cb1pqNp/PPaAdN6ANoCEdAqkL19BrvcHV9lChoBkdAnC0fu5SWJWgHTegDaAhHQKpFM75mAb11fZQoaAZHQJhQV00WM0hoB03oA2gIR0CqR95ha1TjdX2UKGgGR0CQO9BBiTdMaAdN6ANoCEdAqk8S1LJ0XHV9lChoBkdAkWdrzCk43mgHTegDaAhHQKpPu6wt8NR1fZQoaAZHQJKrawRoRI1oB03oA2gIR0CqUf8NH6MzdX2UKGgGR0CUhcf0mMOxaAdN6ANoCEdAqlShhttQ9HV9lChoBkdAlNFurZJ04mgHTegDaAhHQKpb0kbgjyF1fZQoaAZHQJRqd3KSxJNoB03oA2gIR0CqXI5ssQNDdX2UKGgGR0CSMEOc2BJ7aAdN6ANoCEdAql7wTTOPenV9lChoBkdAiifQQDmr82gHTegDaAhHQKphmjoIOYp1fZQoaAZHQI0dUlHBk7RoB03oA2gIR0CqaQH4O+ZgdX2UKGgGR0CNfwtRNyo5aAdN6ANoCEdAqmn5w0fozXV9lChoBkdAjiF4MfA9FGgHTegDaAhHQKpteZmZmZp1fZQoaAZHQJFSb3ai9IxoB03oA2gIR0Cqcd54GD+SdX2UKGgGR0CMGRjd56dEaAdN6ANoCEdAqn3Eo8ZDRnV9lChoBkdAjOlRxtHhCWgHTegDaAhHQKp+y/pt78h1fZQoaAZHQI3lhXU6PsBoB03oA2gIR0Cqgp1gQYk3dX2UKGgGR0CMXh7rLQokaAdN6ANoCEdAqoXrxAjY7XV9lChoBkdAl1rFG0/nn2gHTegDaAhHQKqNIHVwxWV1fZQoaAZHQJa009U0eltoB03oA2gIR0Cqjc7YbsF/dX2UKGgGR0CYrfdzGPxQaAdN6ANoCEdAqpAIG0NSZXV9lChoBkdAmpoTFyaNM2gHTegDaAhHQKqSsDLbHp91fZQoaAZHQJyPKPNmlIpoB03oA2gIR0Cqmd/0Eov0dX2UKGgGR0CaDngX/HYIaAdN6ANoCEdAqpqJe3QUpXV9lChoBkdAlP6AuRLbpWgHTegDaAhHQKqc1n9Nvfl1fZQoaAZHQJXnbFLnLaFoB03oA2gIR0Cqn4rftQbddX2UKGgGR0CUyGPjn3cpaAdN6ANoCEdAqqaQ1UEPlXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f11c1cfa7c2dcc41b1e5760988f50101a55f42ce9690bed25256432103268d7c
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebd5af716f9f9db3132a0df62f8d01e343eef1aaa23db86e648122701adc89f8
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fafb09241f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fafb0924280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fafb0924310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fafb09243a0>", "_build": "<function ActorCriticPolicy._build at 0x7fafb0924430>", "forward": "<function ActorCriticPolicy.forward at 0x7fafb09244c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fafb0924550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fafb09245e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fafb0924670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fafb0924700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fafb0924790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fafb0924820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fafb091e960>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674027358199396635, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOmEkb8XX+w+h98uP4WZN7/JvgE/9uRpPVqtKz8EOIU9gxkrv5z/Bb0Tspu+uXdHPfuBEr9YLbm94ZE6Pv8P9j2GgwQ/QcsRvt2mij8jCJE98Kp9vx/XfD2qMD2/Wqk+vAlBEj9XVMs+TUIAP1XTTD/Kh8A+bVhdP9HHNz8keUdA0iWOv5oUkD/GV5e/1hBKvtHS3L8Gy3Y84qz7vfVDJ0DVyga/XUAgPh1jYT8ul9M8KIeiP7cFHsD1UMG/cV6cvsyfPD9XZQzA5nO6P1kxAkBqDOC/V1TLPk1CAD9V00w/D4MFQB/WGj/E6TQ/FFBLv1Khzj6Z8pzAoJtbv6XlWj2Fad6/SM7/PV1EEMAaY5c/xR1SvnyckT9ztgw/PzggwO5yUz8PesE/ozyLP7UWGr8gzxI/Ph12Pqo8ij+9hblAagzgvzsoIcCqe/+/5fqfv9MOhj/dwgA+McITP8SF8D+fuCXA9+bOP2arhb+EMQa+6AmVv1hQLj8Z+90+ozoBP9Brrr+izDU/3w8VP9+wqj8OS/G+UYijwIygHsBqFvM+gkSAv6dhlL8sShRAwvIcvglBEj87KCHATUIAP1XTTD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADhsTy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/6MhPQAAAABNk/i/AAAAAPE69L0AAAAA5+75PwAAAABVV/67AAAAAMmB4D8AAAAAx7MmvQAAAAB14/i/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTAoNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgK497z0AAAAAzDfvvwAAAAA/46k9AAAAALOa2T8AAAAA6QiiPQAAAABMBts/AAAAAPWTcL0AAAAAT/DnvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADiXQjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBeddy9AAAAACn89L8AAAAAcRdRvQAAAACu6ts/AAAAAMYoVL0AAAAA2t7vPwAAAADaWfS9AAAAAN+f8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADk1hY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAV17PvAAAAACWa+6/AAAAACo7vj0AAAAApmnhPwAAAADNfdq9AAAAAKzz2D8AAAAAQAK4vQAAAABrDO2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJh67ViF0xOMAWyUTegDjAF0lEdAqV5jA8B+4XV9lChoBkdAl9St8eCCjGgHTegDaAhHQKlgke1a4c51fZQoaAZHQJRapYhdMTNoB03oA2gIR0CpYyXNke6qdX2UKGgGR0CXuhnEVFhHaAdN6ANoCEdAqWohJmNBGHV9lChoBkdAmHrAztTkyWgHTegDaAhHQKlqyXkYGdJ1fZQoaAZHQJd63IGQjlhoB03oA2gIR0CpbRdsJpnIdX2UKGgGR0CTnEyU9pyqaAdN6ANoCEdAqW+42Kl54XV9lChoBkdAle2REWqLj2gHTegDaAhHQKl21fdAPd51fZQoaAZHQJaAmDoQnQZoB03oA2gIR0Cpd3/keZG8dX2UKGgGR0CVQk40dilSaAdN6ANoCEdAqXm5avA443V9lChoBkdAk+funIhhY2gHTegDaAhHQKl8XNmlImR1fZQoaAZHQJdd9Jd0JWxoB03oA2gIR0Cpg2z1schldX2UKGgGR0CT7pFrEcbSaAdN6ANoCEdAqYQa+SKWLXV9lChoBkdAmNABMewLVmgHTegDaAhHQKmGVxlQMx51fZQoaAZHQJonlE7W/ahoB03oA2gIR0CpiOjv3JxOdX2UKGgGR0CXQQwXZXdTaAdN6ANoCEdAqZADvXsgMnV9lChoBkdAlYEPcFhXsGgHTegDaAhHQKmQq9AX2uh1fZQoaAZHQJKtscS5AhVoB03oA2gIR0CpkvZ4nndPdX2UKGgGR0CaTcWgezUraAdN6ANoCEdAqZWKy8jAz3V9lChoBkdAmbfrPD50sGgHTegDaAhHQKmcimEXcg11fZQoaAZHQJfYXSsr/bVoB03oA2gIR0CpnTL1uivgdX2UKGgGR0CaJ60Dlo12aAdN6ANoCEdAqZ9kZ9/jKnV9lChoBkdAmNaeK8+Ro2gHTegDaAhHQKmh/BE8aGZ1fZQoaAZHQJhoVkz41xdoB03oA2gIR0CpqT+CTUy6dX2UKGgGR0CWqrZHNHH4aAdN6ANoCEdAqanoEnssx3V9lChoBkdAmYwygwoLHGgHTegDaAhHQKmsIwW3z+Z1fZQoaAZHQJi8TtpmEoRoB03oA2gIR0CprsuDBdledX2UKGgGR0CYtSkTHsC1aAdN6ANoCEdAqbX0gEEDAHV9lChoBkdAmO6ehsZYP2gHTegDaAhHQKm2m7KaG6B1fZQoaAZHQJkTMifQKKJoB03oA2gIR0CpuOf5DZ13dX2UKGgGR0CaC7D9OymiaAdN6ANoCEdAqbuVk1/DtXV9lChoBkdAm7SrBGhEjWgHTegDaAhHQKnCu/mDDj11fZQoaAZHQJyqhLvkRz1oB03oA2gIR0Cpw2VsUIszdX2UKGgGR0CbqmNt65XmaAdN6ANoCEdAqcWnNNahYnV9lChoBkdAnGYz9sJpnGgHTegDaAhHQKnISRbr1NB1fZQoaAZHQJpljkn1FphoB03oA2gIR0Cpz0pqREF4dX2UKGgGR0Ca6Gon8baRaAdN6ANoCEdAqc/0s189fXV9lChoBkdAl00xsANoamgHTegDaAhHQKnSQS/0ulJ1fZQoaAZHQJmYc2OyVwBoB03oA2gIR0Cp1N1lPJq7dX2UKGgGR0CXJPRywOe8aAdN6ANoCEdAqdvu29cry3V9lChoBkdAmcASbQTmGWgHTegDaAhHQKncl6+nIhh1fZQoaAZHQJi4cS/TLGJoB03oA2gIR0Cp3tFUQ04zdX2UKGgGR0CYbs9bX6InaAdN6ANoCEdAqeFaHO8kEHV9lChoBkdAmSMs7QswtmgHTegDaAhHQKnothlUZNx1fZQoaAZHQJOam/0ulGhoB03oA2gIR0Cp6V+l9BrvdX2UKGgGR0CXu0s3yZrpaAdN6ANoCEdAqeuQYaYNRXV9lChoBkdAl3SPjGT9sWgHTegDaAhHQKnuQd7OVxF1fZQoaAZHQJTYu1LJ0XBoB03oA2gIR0Cp9VmOMl1KdX2UKGgGR0CZsNMURFqjaAdN6ANoCEdAqfYAre67NHV9lChoBkdAmNWW7voeP2gHTegDaAhHQKn4TMN+b3J1fZQoaAZHQJkusMz/IbRoB03oA2gIR0Cp+tPUKArhdX2UKGgGR0CcMAIJqqOtaAdN6ANoCEdAqgHSJTER8XV9lChoBkdAmdwsh9srNGgHTegDaAhHQKoCe2YOUdJ1fZQoaAZHQJi1HT+ee4FoB03oA2gIR0CqBNkrPMSsdX2UKGgGR0CYc8mOEM9baAdN6ANoCEdAqgdkFKTSs3V9lChoBkdAk9gbRa5f+mgHTegDaAhHQKoOqJZW7vp1fZQoaAZHQJpy256MR6FoB03oA2gIR0CqD05eqrBCdX2UKGgGR0CeXjNu+AVgaAdN6ANoCEdAqhGaLZSNwXV9lChoBkdAjQCLiuMdcWgHTegDaAhHQKoUMSwnpjd1fZQoaAZHQJlrHpHI6sBoB03oA2gIR0CqG3MZHd43dX2UKGgGR0CbsPVnVXmvaAdN6ANoCEdAqhwdzySV4XV9lChoBkdAmgNh/ustCmgHTegDaAhHQKoeYKUFB6d1fZQoaAZHQJkBYPVd5Y5oB03oA2gIR0CqIQHuRcNZdX2UKGgGR0CXA3GATZg5aAdN6ANoCEdAqigy3w1BMXV9lChoBkdAlFKPBFd9lWgHTegDaAhHQKoo3Tz/ZNB1fZQoaAZHQJXck3AEdNpoB03oA2gIR0CqKzD94u9OdX2UKGgGR0CSKaPKMefaaAdN6ANoCEdAqi37pHI6sHV9lChoBkdAk2J/GyX2NGgHTegDaAhHQKo1M20AtFt1fZQoaAZHQJNAm6cy31BoB03oA2gIR0CqNeQFs54odX2UKGgGR0CPzwGY8dPtaAdN6ANoCEdAqjg9fAsTWXV9lChoBkdAjwLk87p3YGgHTegDaAhHQKo68RmK64F1fZQoaAZHQJjC5Q79ycVoB03oA2gIR0CqQk/GVAzIdX2UKGgGR0Cb1pqNp/PPaAdN6ANoCEdAqkL19BrvcHV9lChoBkdAnC0fu5SWJWgHTegDaAhHQKpFM75mAb11fZQoaAZHQJhQV00WM0hoB03oA2gIR0CqR95ha1TjdX2UKGgGR0CQO9BBiTdMaAdN6ANoCEdAqk8S1LJ0XHV9lChoBkdAkWdrzCk43mgHTegDaAhHQKpPu6wt8NR1fZQoaAZHQJKrawRoRI1oB03oA2gIR0CqUf8NH6MzdX2UKGgGR0CUhcf0mMOxaAdN6ANoCEdAqlShhttQ9HV9lChoBkdAlNFurZJ04mgHTegDaAhHQKpb0kbgjyF1fZQoaAZHQJRqd3KSxJNoB03oA2gIR0CqXI5ssQNDdX2UKGgGR0CSMEOc2BJ7aAdN6ANoCEdAql7wTTOPenV9lChoBkdAiifQQDmr82gHTegDaAhHQKphmjoIOYp1fZQoaAZHQI0dUlHBk7RoB03oA2gIR0CqaQH4O+ZgdX2UKGgGR0CNfwtRNyo5aAdN6ANoCEdAqmn5w0fozXV9lChoBkdAjiF4MfA9FGgHTegDaAhHQKpteZmZmZp1fZQoaAZHQJFSb3ai9IxoB03oA2gIR0Cqcd54GD+SdX2UKGgGR0CMGRjd56dEaAdN6ANoCEdAqn3Eo8ZDRnV9lChoBkdAjOlRxtHhCWgHTegDaAhHQKp+y/pt78h1fZQoaAZHQI3lhXU6PsBoB03oA2gIR0Cqgp1gQYk3dX2UKGgGR0CMXh7rLQokaAdN6ANoCEdAqoXrxAjY7XV9lChoBkdAl1rFG0/nn2gHTegDaAhHQKqNIHVwxWV1fZQoaAZHQJa009U0eltoB03oA2gIR0Cqjc7YbsF/dX2UKGgGR0CYrfdzGPxQaAdN6ANoCEdAqpAIG0NSZXV9lChoBkdAmpoTFyaNM2gHTegDaAhHQKqSsDLbHp91fZQoaAZHQJyPKPNmlIpoB03oA2gIR0Cqmd/0Eov0dX2UKGgGR0CaDngX/HYIaAdN6ANoCEdAqpqJe3QUpXV9lChoBkdAlP6AuRLbpWgHTegDaAhHQKqc1n9Nvfl1fZQoaAZHQJXnbFLnLaFoB03oA2gIR0Cqn4rftQbddX2UKGgGR0CUyGPjn3cpaAdN6ANoCEdAqqaQ1UEPlXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (894 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1228.2080556266587, "std_reward": 287.62384906891657, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T08:35:43.189511"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee2e8e4a373488fc670f5c9566f93f0afaf833f2e19665833bf2f7f5088f1434
3
+ size 2521