{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fafb09241f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fafb0924280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fafb0924310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fafb09243a0>", "_build": "<function ActorCriticPolicy._build at 0x7fafb0924430>", "forward": "<function ActorCriticPolicy.forward at 0x7fafb09244c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fafb0924550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fafb09245e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fafb0924670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fafb0924700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fafb0924790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fafb0924820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fafb091e960>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVUwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWaAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksahZSMAUOUdJRSlIwEaGlnaJRoEiiWaAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksahZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolhoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGghSxqFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [26], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWViwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674034815919313666, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAQAAAAAAAAdbrUAAAAAABBkJNa1Mt78AAAAAzPKMPQAAAAA1FonAQ6j6P9Txfjzd2QNAqLV1PNp3sL86rZ87h/cvwOVkjbxopMW/b/JvvEF6aT9RlXk8oQgSv714ML6XjXq+pXIawF8wz72Mp6i9B1utQAAAAAAEGQk1rUy3vwAAAADM8ow9AAAAADUWicCOz9s/1PF+PA++4D+otXU81aamvzqtnzs8wkzA5WSNvLfxxr9v8m+8J9ReP1GVeTyhCBK/vXgwvpeNer6lchrAXzDPvYynqL0HW61AAAAAAAQZCTWtTLe/AAAAAMzyjD0AAAAANRaJwBQ2B0DU8X485cUAQKi1dTz0rsu/Oq2fO+WRSsDlZI28F+env2/yb7wpCRo/UZV5PKEIEr+9eDC+l416vqVyGsBfMM+9jKeovQdbrUAAAAAABBkJNa1Mt78AAAAAzPKMPQAAAAA1FonAlBmYP9TxfjynpghAqLV1PPjPt786rZ87/a43wOVkjbw5Wc6/b/JvvMV2ZT9RlXk8oQgSv714ML6XjXq+pXIawF8wz72Mp6i9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESxqGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAQAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAnr/kvgAAAAD4rs89AAAAAD7ozr4AAAAAhXuhPgAAAAB4Hx09AAAAAAs/mz8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICpPLe+AAAAAC1j+70AAAAAbwDPvgAAAACz9r8+AAAAAG95/zwAAAAA4I6SPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIi0o74AAAAABtlcPQAAAAD3Lcq+AAAAAK5BlD4AAAAA+z36PQAAAACdC5s/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAk2qlvgAAAAA01bI9AAAAAFXT774AAAAARGpvPgAAAACA9Tc9AAAAAH1Loj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESxqGlIwBQ5R0lFKULg=="}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJQNJHskY42MAWyUTegDjAF0lEdAqci+gxrSE3V9lChoBkdAlQR6WX1J2GgHTegDaAhHQKnIvxNIsiB1fZQoaAZHQJTAycf/3nJoB03oA2gIR0CpyL+vpyIYdX2UKGgGR0CTfcvvjOs1aAdN6ANoCEdAqcjAPZqVQnV9lChoBkdAk5uKOcUdrGgHTegDaAhHQKnWGu4gA6x1fZQoaAZHQJSBBn27FsJoB03oA2gIR0Cp1huB19v1dX2UKGgGR0CVBBRG+bmVaAdN6ANoCEdAqdYcD2alUXV9lChoBkdAlUAxASnLq2gHTegDaAhHQKnWHKe05U91fZQoaAZHQJO5YPkJa7poB03oA2gIR0Cp42V/tpmFdX2UKGgGR0CVVeCoCMgmaAdN6ANoCEdAqeNmECeVcHV9lChoBkdAlGXWdI5HVmgHTegDaAhHQKnjZqYZ2p11fZQoaAZHQJStlbiZOSJoB03oA2gIR0Cp42c45tFbdX2UKGgGR0CUNHyU9pyqaAdN6ANoCEdAqfBz0WdmQXV9lChoBkdAlLadix3V1GgHTegDaAhHQKnwdEuxrzp1fZQoaAZHQJUtLFGXokloB03oA2gIR0Cp8HTS1E3LdX2UKGgGR0CUx37fHggpaAdN6ANoCEdAqfB1To+wDHV9lChoBkdAk9+QdsBQvmgHTegDaAhHQKn9xxmTTv11fZQoaAZHQJSDEM2FWXFoB03oA2gIR0Cp/ceglF+edX2UKGgGR0CUxSt1IRRNaAdN6ANoCEdAqf3IIQe3hHV9lChoBkdAlFxxTS9dvGgHTegDaAhHQKn9yKKpDNR1fZQoaAZHQJRKh29tdiVoB03oA2gIR0CqCrM2WIGhdX2UKGgGR0CUnfqrzXjEaAdN6ANoCEdAqgqzurp7kXV9lChoBkdAlLfNAxBVuWgHTegDaAhHQKoKtEhJRO11fZQoaAZHQJSTD1M/QjVoB03oA2gIR0CqCrTN2TxHdX2UKGgGR0CUt9iQT238aAdN6ANoCEdAqhfStRvWH3V9lChoBkdAlAbJSBK+SWgHTegDaAhHQKoX0z544ZN1fZQoaAZHQJSY+wQlKK5oB03oA2gIR0CqF9PStvGZdX2UKGgGR0CTVEPKdQO4aAdN6ANoCEdAqhfUXvYvnXV9lChoBkdAk1Hz4L1EmmgHTegDaAhHQKolM+SKWLR1fZQoaAZHQJRFFD7ZWaNoB03oA2gIR0CqJTRQ79ycdX2UKGgGR0CUvHELH+6zaAdN6ANoCEdAqiU0zXSSeXV9lChoBkdAlVv33UQTVWgHTegDaAhHQKolNUn5SFZ1fZQoaAZHQJU7ehakhzNoB03oA2gIR0CqMlIr4FibdX2UKGgGR0CVKcmCiAUdaAdN6ANoCEdAqjJS0D2alXV9lChoBkdAlevC9RJmNGgHTegDaAhHQKoyU3T/hl11fZQoaAZHQJTjay0KJEZoB03oA2gIR0CqMlQRGtp3dX2UKGgGR0CWI6tD2JzlaAdN6ANoCEdAqj96OWBz3nV9lChoBkdAlq5vci4axWgHTegDaAhHQKo/euRs/IN1fZQoaAZHQJaaukgwGnpoB03oA2gIR0CqP3uu7pV0dX2UKGgGR0CVi+HLidauaAdN6ANoCEdAqj98cuJ1q3V9lChoBkdAlZVjS1E3KmgHTegDaAhHQKpMkNLDhtN1fZQoaAZHQJTv41LrX19oB03oA2gIR0CqTJFeOXE7dX2UKGgGR0CU7cjUNKAbaAdN6ANoCEdAqkySEL6UJXV9lChoBkdAlf3lTBInSmgHTegDaAhHQKpMks5GSZB1fZQoaAZHQJKuOCqZML5oB03oA2gIR0CqWaV6eGwidX2UKGgGR0CWDv0k4WDZaAdN6ANoCEdAqlmmEZiuuHV9lChoBkfAccg/S6UaAGgHTegDaAhHQKpZpq33HrB1fZQoaAZHQJJJJrWRRuVoB03oA2gIR0CqWadBa9sadX2UKGgGR0CVP4IuGsV+aAdN6ANoCEdAqmbwyCWeH3V9lChoBkdAlPOJmNBF/mgHTegDaAhHQKpm8WGh24d1fZQoaAZHQJP5W2MKkVNoB03oA2gIR0CqZvHtv4ucdX2UKGgGR0CUF7DLKV6eaAdN6ANoCEdAqmbyfFrEcnV9lChoBkdAlUUP4qPOp2gHTegDaAhHQKpzgtHxz7x1fZQoaAZHQJTSl8/lhgFoB03oA2gIR0Cqc4NjkMkQdX2UKGgGR0CUOFKx9oexaAdN6ANoCEdAqnOD+ee4C3V9lChoBkdAlHxTHS4OMGgHTegDaAhHQKpzhIpYs/Z1fZQoaAZHQJKIf2K2rn1oB03oA2gIR0CqgJ0XYUWVdX2UKGgGR0CTnjVf/m1ZaAdN6ANoCEdAqoCdnuiN83V9lChoBkdAlYF7iADq4mgHTegDaAhHQKqAnijtXxR1fZQoaAZHQJKp6iItUXJoB03oA2gIR0CqgJ68g6ltdX2UKGgGR0CMsB33YcvNaAdN6ANoCEdAqo3YnH/953V9lChoBkdAk0jS619fC2gHTegDaAhHQKqN2TmGM4t1fZQoaAZHQJRfzX05EMNoB03oA2gIR0CqjdnTiKixdX2UKGgGR0CTlKX7cfvGaAdN6ANoCEdAqo3abUgB93V9lChoBkdAkxUUILPUrmgHTegDaAhHQKqbHbOeJ551fZQoaAZHQJCRP0L+glFoB03oA2gIR0Cqmx4hUzbfdX2UKGgGR8CAJ7rk8zRAaAdN6ANoCEdAqpseiBXjl3V9lChoBkdAkJwekLx7RmgHTegDaAhHQKqbHwLmZE51fZQoaAZHQJKkfV8Ti85oB03oA2gIR0CqqHK5CngpdX2UKGgGR0CSkUwN9YwJaAdN6ANoCEdAqqhzSG8Em3V9lChoBkdAkk6okRjBmGgHTegDaAhHQKqoc938n/l1fZQoaAZHwGCJq7Ackt5oB03oA2gIR0CqqHR/mT1TdX2UKGgGR0CTZkYYBNmEaAdN6ANoCEdAqrVgMfA9FHV9lChoBkdAlLpVXiiqQ2gHTegDaAhHQKq1YLiMo+h1fZQoaAZHQJJsB3cHnlpoB03oA2gIR0CqtWE9t/FzdX2UKGgGR0CTy0+IdlunaAdN6ANoCEdAqrViRyOrAHV9lChoBkdAkkTA4CIUJ2gHTegDaAhHQKrGBfk3juN1fZQoaAZHQJLjcJlar3loB03oA2gIR0CqxgaQ/5ckdX2UKGgGR0CRnOG8274BaAdN6ANoCEdAqsYHIKc/dXV9lChoBkdAkf2jw6QvH2gHTegDaAhHQKrGB7cfvF51fZQoaAZHQJMro0UGmk5oB03oA2gIR0Cq05IXTEzgdX2UKGgGR0CTQtC53C9AaAdN6ANoCEdAqtOSqjrRjXV9lChoBkdAlExUI9kjHGgHTegDaAhHQKrTkzcAR051fZQoaAZHQJO49wLmZE5oB03oA2gIR0Cq05PC/GlzdX2UKGgGR0CSRDFmFrVOaAdN6ANoCEdAquDmeSSvDHV9lChoBkdAkV8aQzUI9mgHTegDaAhHQKrg5zjFQ2x1fZQoaAZHQJGlXFn7HhloB03oA2gIR0Cq4OhBzFMqdX2UKGgGR0CRtqwLE1l5aAdN6ANoCEdAquDpVhkRSXV9lChoBkdAlBhfVVghKWgHTegDaAhHQKruavaDf3x1fZQoaAZHQJO5YE6kqMFoB03oA2gIR0Cq7mt8ma6SdX2UKGgGR0CTdcjz7MxHaAdN6ANoCEdAqu5sCzTnaHV9lChoBkdAk3p5/5LytmgHTegDaAhHQKrubJTVDrt1fZQoaAZHQJJvQORT0g9oB03oA2gIR0Cq/jYoRZlndX2UKGgGR0CSinNHYpUhaAdN6ANoCEdAqv43NLUTc3V9lChoBkdAkogEJBw++2gHTegDaAhHQKr+OFZgXuV1fZQoaAZHQJJIA+EAYHhoB03oA2gIR0Cq/jlRYRukdX2UKGgGR0CTeZGJvYOEaAdN6ANoCEdAqwwhzHS4OXV9lChoBkdAkq/8a4tpVWgHTegDaAhHQKsMIliz9jx1fZQoaAZHQJOl+eUY8+1oB03oA2gIR0CrDCLncL0BdX2UKGgGR0B5h3HLidauaAdN6ANoCEdAqwwjch1TznVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}} |