RajMoodley commited on
Commit
62c363a
1 Parent(s): 2bd8672

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.84 +/- 1.13
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c888df1b9e8c0f6e8227b6399a6a5203fa9d4a74d537afa4dc41e3e4c1ce64e8
3
+ size 108011
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe8777a08b0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7fe87779b8d0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1500000,
45
+ "_total_timesteps": 1500000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674148226908001765,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAABd3CPjk2UzyRDxI/Bd3CPjk2UzyRDxI/Bd3CPjk2UzyRDxI/Bd3CPjk2UzyRDxI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGH0MPyFzgz5/inc/gqJWP+e+Dj8mmw89Wa0jv5SM5z6I0gm/uQ1AvwB31b+Yw82/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAF3cI+OTZTPJEPEj96SwQ8JaliOj+5+7sF3cI+OTZTPJEPEj96SwQ8JaliOj+5+7sF3cI+OTZTPJEPEj96SwQ8JaliOj+5+7sF3cI+OTZTPJEPEj96SwQ8JaliOj+5+7uUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.3805925 0.01289135 0.57055 ]\n [0.3805925 0.01289135 0.57055 ]\n [0.3805925 0.01289135 0.57055 ]\n [0.3805925 0.01289135 0.57055 ]]",
60
+ "desired_goal": "[[ 0.5487838 0.25673774 0.96695703]\n [ 0.8384172 0.55760044 0.03506007]\n [-0.6393638 0.4522444 -0.5383687 ]\n [-0.7502094 -1.6676941 -1.6075315 ]]",
61
+ "observation": "[[ 0.3805925 0.01289135 0.57055 0.00807464 0.00086464 -0.007682 ]\n [ 0.3805925 0.01289135 0.57055 0.00807464 0.00086464 -0.007682 ]\n [ 0.3805925 0.01289135 0.57055 0.00807464 0.00086464 -0.007682 ]\n [ 0.3805925 0.01289135 0.57055 0.00807464 0.00086464 -0.007682 ]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8BbJvT+IBr5skYQ+SwWLvWLpCT5WUaI9JVeivShVRzz++Gw+3RSlPRZ+rbwhqEw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.09818828 -0.13137911 0.25892198]\n [-0.06788119 0.13467935 0.0792567 ]\n [-0.07926778 0.0121663 0.23141858]\n [ 0.0806062 -0.02117829 0.19986011]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIofSFkPN+CcCUhpRSlIwBbJRLMowBdJRHQK4GeIAwPAh1fZQoaAZoCWgPQwgH76tyodIAwJSGlFKUaBVLMmgWR0CuBjqx1PnCdX2UKGgGaAloD0MIgxlTsMY5BMCUhpRSlGgVSzJoFkdArgXpuAI6bXV9lChoBmgJaA9DCPyp8dJNYv+/lIaUUpRoFUsyaBZHQK4FkvYe1a51fZQoaAZoCWgPQwh+5Nak2xL6v5SGlFKUaBVLMmgWR0CuB3F3yI56dX2UKGgGaAloD0MIlUiil1Fs/7+UhpRSlGgVSzJoFkdArgczpzLfUHV9lChoBmgJaA9DCJpgONcwIwLAlIaUUpRoFUsyaBZHQK4G4qhDgIh1fZQoaAZoCWgPQwinyYy3lR4EwJSGlFKUaBVLMmgWR0CuBovWH1vmdX2UKGgGaAloD0MIu5unOuQmF8CUhpRSlGgVSzJoFkdArghgAuIykHV9lChoBmgJaA9DCDNqvko+Ng3AlIaUUpRoFUsyaBZHQK4IIjqv/zd1fZQoaAZoCWgPQwjysbtASQH6v5SGlFKUaBVLMmgWR0CuB9FXzUZvdX2UKGgGaAloD0MIW7QAbavZ/L+UhpRSlGgVSzJoFkdArgd6ews5GXV9lChoBmgJaA9DCIdtizIbBAbAlIaUUpRoFUsyaBZHQK4JVtCRfWt1fZQoaAZoCWgPQwhk6UMX1Hfzv5SGlFKUaBVLMmgWR0CuCRlaSs8xdX2UKGgGaAloD0MIo8ubw7Wa9b+UhpRSlGgVSzJoFkdArgjIskIHDHV9lChoBmgJaA9DCCEE5EuoQAjAlIaUUpRoFUsyaBZHQK4IcdkJ8fF1fZQoaAZoCWgPQwjmzkwwnOv7v5SGlFKUaBVLMmgWR0CuCknmig01dX2UKGgGaAloD0MIHLeYnxsa9r+UhpRSlGgVSzJoFkdArgoMYQ8OkXV9lChoBmgJaA9DCE+y1eWUwP6/lIaUUpRoFUsyaBZHQK4Ju6DoQnR1fZQoaAZoCWgPQwjZCS/BqW8JwJSGlFKUaBVLMmgWR0CuCWTByjpLdX2UKGgGaAloD0MISgfr/xyGBcCUhpRSlGgVSzJoFkdArgs8UZeiSXV9lChoBmgJaA9DCF5LyAc9OwLAlIaUUpRoFUsyaBZHQK4K/orWiDd1fZQoaAZoCWgPQwjVWwNbJfgVwJSGlFKUaBVLMmgWR0CuCq4Lb5/LdX2UKGgGaAloD0MIIR6Jl6eTCMCUhpRSlGgVSzJoFkdArgpXN9ph4XV9lChoBmgJaA9DCLDKhcq/lvu/lIaUUpRoFUsyaBZHQK4MOTL4etF1fZQoaAZoCWgPQwjdByC1iRMUwJSGlFKUaBVLMmgWR0CuC/u8TSLJdX2UKGgGaAloD0MItFpgj4l0EMCUhpRSlGgVSzJoFkdArgurGtITXnV9lChoBmgJaA9DCH8UdeYeEgnAlIaUUpRoFUsyaBZHQK4LVOpKjBV1fZQoaAZoCWgPQwiYofFEEOf7v5SGlFKUaBVLMmgWR0CuDSuq//NrdX2UKGgGaAloD0MIoUeMnlso+b+UhpRSlGgVSzJoFkdArgzuAVfu1HV9lChoBmgJaA9DCIYCtoMRmwDAlIaUUpRoFUsyaBZHQK4MnQzDXOJ1fZQoaAZoCWgPQwjrAIi7etUHwJSGlFKUaBVLMmgWR0CuDEY7aIvbdX2UKGgGaAloD0MIri08LxX7BMCUhpRSlGgVSzJoFkdArg4aA2AG0XV9lChoBmgJaA9DCDKSPULNUPi/lIaUUpRoFUsyaBZHQK4N3OdoWYZ1fZQoaAZoCWgPQwjp8uZwrfb7v5SGlFKUaBVLMmgWR0CuDYxVAAyVdX2UKGgGaAloD0MIkiHH1jOE/r+UhpRSlGgVSzJoFkdArg01xuKoAHV9lChoBmgJaA9DCIwxsI7jBwPAlIaUUpRoFUsyaBZHQK4PEgV45cV1fZQoaAZoCWgPQwgQrRVtjnMOwJSGlFKUaBVLMmgWR0CuDtQswtaqdX2UKGgGaAloD0MIe0rOiT00+b+UhpRSlGgVSzJoFkdArg6DdN34bnV9lChoBmgJaA9DCG4zFeKR+AHAlIaUUpRoFUsyaBZHQK4OLN21Ul11fZQoaAZoCWgPQwih9IWQ8x4JwJSGlFKUaBVLMmgWR0CuEAZoGpuNdX2UKGgGaAloD0MIsoAJ3Lo7AMCUhpRSlGgVSzJoFkdArg/I593KS3V9lChoBmgJaA9DCO7QsBh1DQ/AlIaUUpRoFUsyaBZHQK4PeCRwIdF1fZQoaAZoCWgPQwiVSQ1tADb3v5SGlFKUaBVLMmgWR0CuDyF9BrvcdX2UKGgGaAloD0MIONvcmJ4w+7+UhpRSlGgVSzJoFkdArhECy8jAz3V9lChoBmgJaA9DCKoKDcSymfy/lIaUUpRoFUsyaBZHQK4QxQGfPHF1fZQoaAZoCWgPQwjiHksfuuAJwJSGlFKUaBVLMmgWR0CuEHRCIDYAdX2UKGgGaAloD0MI+rfLft1p+7+UhpRSlGgVSzJoFkdArhAd2TxG2HV9lChoBmgJaA9DCPd4IR0eAgTAlIaUUpRoFUsyaBZHQK4R7cCYCyR1fZQoaAZoCWgPQwiLa3wm+8cAwJSGlFKUaBVLMmgWR0CuEbANG3F2dX2UKGgGaAloD0MI1EfgDz9/A8CUhpRSlGgVSzJoFkdArhFfcxj8UHV9lChoBmgJaA9DCEEOSphpO/a/lIaUUpRoFUsyaBZHQK4RCJ6Y3Nt1fZQoaAZoCWgPQwjc9j3qr9cRwJSGlFKUaBVLMmgWR0CuEuo9kjHGdX2UKGgGaAloD0MIUS0iislb/r+UhpRSlGgVSzJoFkdArhKsh5gPVnV9lChoBmgJaA9DCG3H1F3ZJQvAlIaUUpRoFUsyaBZHQK4SW8lolD51fZQoaAZoCWgPQwgk8fJ0rkgKwJSGlFKUaBVLMmgWR0CuEgUT101ZdX2UKGgGaAloD0MI5dGNsKiIAsCUhpRSlGgVSzJoFkdArhPUsSTQmnV9lChoBmgJaA9DCEsi+yDLogTAlIaUUpRoFUsyaBZHQK4Tlw8W9Dh1fZQoaAZoCWgPQwiO6J51jVYCwJSGlFKUaBVLMmgWR0CuE0YWtU4rdX2UKGgGaAloD0MI7+TTY1vGA8CUhpRSlGgVSzJoFkdArhLvhXKbKHV9lChoBmgJaA9DCFDHYwYqowDAlIaUUpRoFUsyaBZHQK4UyEIw/Ph1fZQoaAZoCWgPQwihZkgVxSv4v5SGlFKUaBVLMmgWR0CuFIsp5NXYdX2UKGgGaAloD0MIoYFYNnOoAMCUhpRSlGgVSzJoFkdArhQ7DTBqK3V9lChoBmgJaA9DCPbOaKuS6ADAlIaUUpRoFUsyaBZHQK4T5O2RaHN1fZQoaAZoCWgPQwhHjQkxlxQCwJSGlFKUaBVLMmgWR0CuFbENFz+4dX2UKGgGaAloD0MIgLirV5FRAcCUhpRSlGgVSzJoFkdArhVzZg5R0nV9lChoBmgJaA9DCDMbZJKRc/e/lIaUUpRoFUsyaBZHQK4VIn+AEuB1fZQoaAZoCWgPQwgDCvX0EZgGwJSGlFKUaBVLMmgWR0CuFMubI91VdX2UKGgGaAloD0MIglSKHY1DCsCUhpRSlGgVSzJoFkdArhatfw7T2HV9lChoBmgJaA9DCM0Bgjl6HAnAlIaUUpRoFUsyaBZHQK4Wb9Ujs2N1fZQoaAZoCWgPQwh4uYjvxGwCwJSGlFKUaBVLMmgWR0CuFh7yhBZ7dX2UKGgGaAloD0MIJ6Q1Bp1Q/L+UhpRSlGgVSzJoFkdArhXIK6WgOHV9lChoBmgJaA9DCAlrY+yE1wTAlIaUUpRoFUsyaBZHQK4XrUgB91F1fZQoaAZoCWgPQwja5zHKMy/1v5SGlFKUaBVLMmgWR0CuF2+2/i5vdX2UKGgGaAloD0MIEMr7OJqjEsCUhpRSlGgVSzJoFkdArhcfGKhtcnV9lChoBmgJaA9DCObqxyb5Efq/lIaUUpRoFUsyaBZHQK4WyGwiaAp1fZQoaAZoCWgPQwgnvASnPtD+v5SGlFKUaBVLMmgWR0CuGKtTUAktdX2UKGgGaAloD0MI9Zz0vvHVCsCUhpRSlGgVSzJoFkdArhhtq59Vm3V9lChoBmgJaA9DCAIQd/UqsgbAlIaUUpRoFUsyaBZHQK4YHMbm2b51fZQoaAZoCWgPQwhyi/m5oan3v5SGlFKUaBVLMmgWR0CuF8Y8Md92dX2UKGgGaAloD0MIMV9egH2UCcCUhpRSlGgVSzJoFkdArhmuqkuYhXV9lChoBmgJaA9DCJaxoZv9gfa/lIaUUpRoFUsyaBZHQK4ZcO2AoXt1fZQoaAZoCWgPQwgfn5Cdt7EKwJSGlFKUaBVLMmgWR0CuGSBWxQizdX2UKGgGaAloD0MIY3st6L3RC8CUhpRSlGgVSzJoFkdArhjJtBOYY3V9lChoBmgJaA9DCNcv2A3bFvi/lIaUUpRoFUsyaBZHQK4asZeiSJV1fZQoaAZoCWgPQwiZmgRvSGMKwJSGlFKUaBVLMmgWR0CuGnQz1scidX2UKGgGaAloD0MIx6ATQgddBMCUhpRSlGgVSzJoFkdArhojrZ8KHHV9lChoBmgJaA9DCF5ortNIqwXAlIaUUpRoFUsyaBZHQK4ZzOUt7KJ1fZQoaAZoCWgPQwjtfaoKDYT6v5SGlFKUaBVLMmgWR0CuG6hQm/nGdX2UKGgGaAloD0MITIv6JHc4B8CUhpRSlGgVSzJoFkdArhtqvRqoInV9lChoBmgJaA9DCImbU8kAUAfAlIaUUpRoFUsyaBZHQK4bGgSvkil1fZQoaAZoCWgPQwhUAmISLiT5v5SGlFKUaBVLMmgWR0CuGsN6w+t9dX2UKGgGaAloD0MIxLRv7q++DcCUhpRSlGgVSzJoFkdArhypVwPy1HV9lChoBmgJaA9DCChIbHcPEAbAlIaUUpRoFUsyaBZHQK4ca7VawEB1fZQoaAZoCWgPQwhLrIxGPo8GwJSGlFKUaBVLMmgWR0CuHBrhzeXSdX2UKGgGaAloD0MIcHmsGRkEB8CUhpRSlGgVSzJoFkdArhvELx7RfHV9lChoBmgJaA9DCOCD1y5tuP6/lIaUUpRoFUsyaBZHQK4drfb9If91fZQoaAZoCWgPQwioixTKwhf7v5SGlFKUaBVLMmgWR0CuHXAuh9LIdX2UKGgGaAloD0MIwDxkyocACMCUhpRSlGgVSzJoFkdArh0ffyf+THV9lChoBmgJaA9DCDF5A8x8RwvAlIaUUpRoFUsyaBZHQK4cyOby6MB1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 75000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:594175a894265570a104dff9f169442176522c1073ddd2e8bb32b9f5820a1ef6
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62cf4a7dd70266c866980a29f1ab21294180e4f38cf9381071e56cf35a3808a8
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe8777a08b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe87779b8d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674148226908001765, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAABd3CPjk2UzyRDxI/Bd3CPjk2UzyRDxI/Bd3CPjk2UzyRDxI/Bd3CPjk2UzyRDxI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGH0MPyFzgz5/inc/gqJWP+e+Dj8mmw89Wa0jv5SM5z6I0gm/uQ1AvwB31b+Yw82/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAF3cI+OTZTPJEPEj96SwQ8JaliOj+5+7sF3cI+OTZTPJEPEj96SwQ8JaliOj+5+7sF3cI+OTZTPJEPEj96SwQ8JaliOj+5+7sF3cI+OTZTPJEPEj96SwQ8JaliOj+5+7uUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3805925 0.01289135 0.57055 ]\n [0.3805925 0.01289135 0.57055 ]\n [0.3805925 0.01289135 0.57055 ]\n [0.3805925 0.01289135 0.57055 ]]", "desired_goal": "[[ 0.5487838 0.25673774 0.96695703]\n [ 0.8384172 0.55760044 0.03506007]\n [-0.6393638 0.4522444 -0.5383687 ]\n [-0.7502094 -1.6676941 -1.6075315 ]]", "observation": "[[ 0.3805925 0.01289135 0.57055 0.00807464 0.00086464 -0.007682 ]\n [ 0.3805925 0.01289135 0.57055 0.00807464 0.00086464 -0.007682 ]\n [ 0.3805925 0.01289135 0.57055 0.00807464 0.00086464 -0.007682 ]\n [ 0.3805925 0.01289135 0.57055 0.00807464 0.00086464 -0.007682 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8BbJvT+IBr5skYQ+SwWLvWLpCT5WUaI9JVeivShVRzz++Gw+3RSlPRZ+rbwhqEw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.09818828 -0.13137911 0.25892198]\n [-0.06788119 0.13467935 0.0792567 ]\n [-0.07926778 0.0121663 0.23141858]\n [ 0.0806062 -0.02117829 0.19986011]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIofSFkPN+CcCUhpRSlIwBbJRLMowBdJRHQK4GeIAwPAh1fZQoaAZoCWgPQwgH76tyodIAwJSGlFKUaBVLMmgWR0CuBjqx1PnCdX2UKGgGaAloD0MIgxlTsMY5BMCUhpRSlGgVSzJoFkdArgXpuAI6bXV9lChoBmgJaA9DCPyp8dJNYv+/lIaUUpRoFUsyaBZHQK4FkvYe1a51fZQoaAZoCWgPQwh+5Nak2xL6v5SGlFKUaBVLMmgWR0CuB3F3yI56dX2UKGgGaAloD0MIlUiil1Fs/7+UhpRSlGgVSzJoFkdArgczpzLfUHV9lChoBmgJaA9DCJpgONcwIwLAlIaUUpRoFUsyaBZHQK4G4qhDgIh1fZQoaAZoCWgPQwinyYy3lR4EwJSGlFKUaBVLMmgWR0CuBovWH1vmdX2UKGgGaAloD0MIu5unOuQmF8CUhpRSlGgVSzJoFkdArghgAuIykHV9lChoBmgJaA9DCDNqvko+Ng3AlIaUUpRoFUsyaBZHQK4IIjqv/zd1fZQoaAZoCWgPQwjysbtASQH6v5SGlFKUaBVLMmgWR0CuB9FXzUZvdX2UKGgGaAloD0MIW7QAbavZ/L+UhpRSlGgVSzJoFkdArgd6ews5GXV9lChoBmgJaA9DCIdtizIbBAbAlIaUUpRoFUsyaBZHQK4JVtCRfWt1fZQoaAZoCWgPQwhk6UMX1Hfzv5SGlFKUaBVLMmgWR0CuCRlaSs8xdX2UKGgGaAloD0MIo8ubw7Wa9b+UhpRSlGgVSzJoFkdArgjIskIHDHV9lChoBmgJaA9DCCEE5EuoQAjAlIaUUpRoFUsyaBZHQK4IcdkJ8fF1fZQoaAZoCWgPQwjmzkwwnOv7v5SGlFKUaBVLMmgWR0CuCknmig01dX2UKGgGaAloD0MIHLeYnxsa9r+UhpRSlGgVSzJoFkdArgoMYQ8OkXV9lChoBmgJaA9DCE+y1eWUwP6/lIaUUpRoFUsyaBZHQK4Ju6DoQnR1fZQoaAZoCWgPQwjZCS/BqW8JwJSGlFKUaBVLMmgWR0CuCWTByjpLdX2UKGgGaAloD0MISgfr/xyGBcCUhpRSlGgVSzJoFkdArgs8UZeiSXV9lChoBmgJaA9DCF5LyAc9OwLAlIaUUpRoFUsyaBZHQK4K/orWiDd1fZQoaAZoCWgPQwjVWwNbJfgVwJSGlFKUaBVLMmgWR0CuCq4Lb5/LdX2UKGgGaAloD0MIIR6Jl6eTCMCUhpRSlGgVSzJoFkdArgpXN9ph4XV9lChoBmgJaA9DCLDKhcq/lvu/lIaUUpRoFUsyaBZHQK4MOTL4etF1fZQoaAZoCWgPQwjdByC1iRMUwJSGlFKUaBVLMmgWR0CuC/u8TSLJdX2UKGgGaAloD0MItFpgj4l0EMCUhpRSlGgVSzJoFkdArgurGtITXnV9lChoBmgJaA9DCH8UdeYeEgnAlIaUUpRoFUsyaBZHQK4LVOpKjBV1fZQoaAZoCWgPQwiYofFEEOf7v5SGlFKUaBVLMmgWR0CuDSuq//NrdX2UKGgGaAloD0MIoUeMnlso+b+UhpRSlGgVSzJoFkdArgzuAVfu1HV9lChoBmgJaA9DCIYCtoMRmwDAlIaUUpRoFUsyaBZHQK4MnQzDXOJ1fZQoaAZoCWgPQwjrAIi7etUHwJSGlFKUaBVLMmgWR0CuDEY7aIvbdX2UKGgGaAloD0MIri08LxX7BMCUhpRSlGgVSzJoFkdArg4aA2AG0XV9lChoBmgJaA9DCDKSPULNUPi/lIaUUpRoFUsyaBZHQK4N3OdoWYZ1fZQoaAZoCWgPQwjp8uZwrfb7v5SGlFKUaBVLMmgWR0CuDYxVAAyVdX2UKGgGaAloD0MIkiHH1jOE/r+UhpRSlGgVSzJoFkdArg01xuKoAHV9lChoBmgJaA9DCIwxsI7jBwPAlIaUUpRoFUsyaBZHQK4PEgV45cV1fZQoaAZoCWgPQwgQrRVtjnMOwJSGlFKUaBVLMmgWR0CuDtQswtaqdX2UKGgGaAloD0MIe0rOiT00+b+UhpRSlGgVSzJoFkdArg6DdN34bnV9lChoBmgJaA9DCG4zFeKR+AHAlIaUUpRoFUsyaBZHQK4OLN21Ul11fZQoaAZoCWgPQwih9IWQ8x4JwJSGlFKUaBVLMmgWR0CuEAZoGpuNdX2UKGgGaAloD0MIsoAJ3Lo7AMCUhpRSlGgVSzJoFkdArg/I593KS3V9lChoBmgJaA9DCO7QsBh1DQ/AlIaUUpRoFUsyaBZHQK4PeCRwIdF1fZQoaAZoCWgPQwiVSQ1tADb3v5SGlFKUaBVLMmgWR0CuDyF9BrvcdX2UKGgGaAloD0MIONvcmJ4w+7+UhpRSlGgVSzJoFkdArhECy8jAz3V9lChoBmgJaA9DCKoKDcSymfy/lIaUUpRoFUsyaBZHQK4QxQGfPHF1fZQoaAZoCWgPQwjiHksfuuAJwJSGlFKUaBVLMmgWR0CuEHRCIDYAdX2UKGgGaAloD0MI+rfLft1p+7+UhpRSlGgVSzJoFkdArhAd2TxG2HV9lChoBmgJaA9DCPd4IR0eAgTAlIaUUpRoFUsyaBZHQK4R7cCYCyR1fZQoaAZoCWgPQwiLa3wm+8cAwJSGlFKUaBVLMmgWR0CuEbANG3F2dX2UKGgGaAloD0MI1EfgDz9/A8CUhpRSlGgVSzJoFkdArhFfcxj8UHV9lChoBmgJaA9DCEEOSphpO/a/lIaUUpRoFUsyaBZHQK4RCJ6Y3Nt1fZQoaAZoCWgPQwjc9j3qr9cRwJSGlFKUaBVLMmgWR0CuEuo9kjHGdX2UKGgGaAloD0MIUS0iislb/r+UhpRSlGgVSzJoFkdArhKsh5gPVnV9lChoBmgJaA9DCG3H1F3ZJQvAlIaUUpRoFUsyaBZHQK4SW8lolD51fZQoaAZoCWgPQwgk8fJ0rkgKwJSGlFKUaBVLMmgWR0CuEgUT101ZdX2UKGgGaAloD0MI5dGNsKiIAsCUhpRSlGgVSzJoFkdArhPUsSTQmnV9lChoBmgJaA9DCEsi+yDLogTAlIaUUpRoFUsyaBZHQK4Tlw8W9Dh1fZQoaAZoCWgPQwiO6J51jVYCwJSGlFKUaBVLMmgWR0CuE0YWtU4rdX2UKGgGaAloD0MI7+TTY1vGA8CUhpRSlGgVSzJoFkdArhLvhXKbKHV9lChoBmgJaA9DCFDHYwYqowDAlIaUUpRoFUsyaBZHQK4UyEIw/Ph1fZQoaAZoCWgPQwihZkgVxSv4v5SGlFKUaBVLMmgWR0CuFIsp5NXYdX2UKGgGaAloD0MIoYFYNnOoAMCUhpRSlGgVSzJoFkdArhQ7DTBqK3V9lChoBmgJaA9DCPbOaKuS6ADAlIaUUpRoFUsyaBZHQK4T5O2RaHN1fZQoaAZoCWgPQwhHjQkxlxQCwJSGlFKUaBVLMmgWR0CuFbENFz+4dX2UKGgGaAloD0MIgLirV5FRAcCUhpRSlGgVSzJoFkdArhVzZg5R0nV9lChoBmgJaA9DCDMbZJKRc/e/lIaUUpRoFUsyaBZHQK4VIn+AEuB1fZQoaAZoCWgPQwgDCvX0EZgGwJSGlFKUaBVLMmgWR0CuFMubI91VdX2UKGgGaAloD0MIglSKHY1DCsCUhpRSlGgVSzJoFkdArhatfw7T2HV9lChoBmgJaA9DCM0Bgjl6HAnAlIaUUpRoFUsyaBZHQK4Wb9Ujs2N1fZQoaAZoCWgPQwh4uYjvxGwCwJSGlFKUaBVLMmgWR0CuFh7yhBZ7dX2UKGgGaAloD0MIJ6Q1Bp1Q/L+UhpRSlGgVSzJoFkdArhXIK6WgOHV9lChoBmgJaA9DCAlrY+yE1wTAlIaUUpRoFUsyaBZHQK4XrUgB91F1fZQoaAZoCWgPQwja5zHKMy/1v5SGlFKUaBVLMmgWR0CuF2+2/i5vdX2UKGgGaAloD0MIEMr7OJqjEsCUhpRSlGgVSzJoFkdArhcfGKhtcnV9lChoBmgJaA9DCObqxyb5Efq/lIaUUpRoFUsyaBZHQK4WyGwiaAp1fZQoaAZoCWgPQwgnvASnPtD+v5SGlFKUaBVLMmgWR0CuGKtTUAktdX2UKGgGaAloD0MI9Zz0vvHVCsCUhpRSlGgVSzJoFkdArhhtq59Vm3V9lChoBmgJaA9DCAIQd/UqsgbAlIaUUpRoFUsyaBZHQK4YHMbm2b51fZQoaAZoCWgPQwhyi/m5oan3v5SGlFKUaBVLMmgWR0CuF8Y8Md92dX2UKGgGaAloD0MIMV9egH2UCcCUhpRSlGgVSzJoFkdArhmuqkuYhXV9lChoBmgJaA9DCJaxoZv9gfa/lIaUUpRoFUsyaBZHQK4ZcO2AoXt1fZQoaAZoCWgPQwgfn5Cdt7EKwJSGlFKUaBVLMmgWR0CuGSBWxQizdX2UKGgGaAloD0MIY3st6L3RC8CUhpRSlGgVSzJoFkdArhjJtBOYY3V9lChoBmgJaA9DCNcv2A3bFvi/lIaUUpRoFUsyaBZHQK4asZeiSJV1fZQoaAZoCWgPQwiZmgRvSGMKwJSGlFKUaBVLMmgWR0CuGnQz1scidX2UKGgGaAloD0MIx6ATQgddBMCUhpRSlGgVSzJoFkdArhojrZ8KHHV9lChoBmgJaA9DCF5ortNIqwXAlIaUUpRoFUsyaBZHQK4ZzOUt7KJ1fZQoaAZoCWgPQwjtfaoKDYT6v5SGlFKUaBVLMmgWR0CuG6hQm/nGdX2UKGgGaAloD0MITIv6JHc4B8CUhpRSlGgVSzJoFkdArhtqvRqoInV9lChoBmgJaA9DCImbU8kAUAfAlIaUUpRoFUsyaBZHQK4bGgSvkil1fZQoaAZoCWgPQwhUAmISLiT5v5SGlFKUaBVLMmgWR0CuGsN6w+t9dX2UKGgGaAloD0MIxLRv7q++DcCUhpRSlGgVSzJoFkdArhypVwPy1HV9lChoBmgJaA9DCChIbHcPEAbAlIaUUpRoFUsyaBZHQK4ca7VawEB1fZQoaAZoCWgPQwhLrIxGPo8GwJSGlFKUaBVLMmgWR0CuHBrhzeXSdX2UKGgGaAloD0MIcHmsGRkEB8CUhpRSlGgVSzJoFkdArhvELx7RfHV9lChoBmgJaA9DCOCD1y5tuP6/lIaUUpRoFUsyaBZHQK4drfb9If91fZQoaAZoCWgPQwioixTKwhf7v5SGlFKUaBVLMmgWR0CuHXAuh9LIdX2UKGgGaAloD0MIwDxkyocACMCUhpRSlGgVSzJoFkdArh0ffyf+THV9lChoBmgJaA9DCDF5A8x8RwvAlIaUUpRoFUsyaBZHQK4cyOby6MB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 75000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (613 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.8391917638946325, "std_reward": 1.1287256688120506, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T18:16:59.266072"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7e6decdfd3298cd45195bbbdf3c57ec3b5bc3200a3697a38b29cb5a67566886
3
+ size 3212