metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- sem_eval_2018_task_1
metrics:
- f1
- accuracy
model-index:
- name: bert-finetuned-sem_eval-english
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: sem_eval_2018_task_1
type: sem_eval_2018_task_1
config: subtask5.english
split: validation
args: subtask5.english
metrics:
- name: F1
type: f1
value: 0.659666128163705
- name: Accuracy
type: accuracy
value: 0.24943566591422123
bert-finetuned-sem_eval-english
This model is a fine-tuned version of bert-base-uncased on the sem_eval_2018_task_1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3267
- F1: 0.6597
- Roc Auc: 0.7618
- Accuracy: 0.2494
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.406 | 1.0 | 855 | 0.3267 | 0.6597 | 0.7618 | 0.2494 |
Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3