RajuEEE's picture
rajuEEE/ExampleBert
fa7bfd5
|
raw
history blame
1.91 kB
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- sem_eval_2018_task_1
metrics:
- f1
- accuracy
model-index:
- name: bert-finetuned-sem_eval-english
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: sem_eval_2018_task_1
type: sem_eval_2018_task_1
config: subtask5.english
split: validation
args: subtask5.english
metrics:
- name: F1
type: f1
value: 0.659666128163705
- name: Accuracy
type: accuracy
value: 0.24943566591422123
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-sem_eval-english
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the sem_eval_2018_task_1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3267
- F1: 0.6597
- Roc Auc: 0.7618
- Accuracy: 0.2494
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
| 0.406 | 1.0 | 855 | 0.3267 | 0.6597 | 0.7618 | 0.2494 |
### Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3