RajuKandasamy commited on
Commit
db4fe87
1 Parent(s): 30a9e3a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -2
README.md CHANGED
@@ -38,14 +38,13 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
38
  model_path = "RajuKandasamy/ponniyinselvan_1.4b_alpha"
39
  device = "cuda" if torch.cuda.is_available() else "cpu"
40
  model = AutoModelForCausalLM.from_pretrained(model_path, load_in_8bit=False).to(device)
41
-
42
  tokenizer = AutoTokenizer.from_pretrained(model_path)
43
 
44
  model.eval()
45
 
46
  prompt="""வந்தியத்தேவன்"""
47
  input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
48
- attention_mask = torch.ones_like(input_ids).to(model.device) # set attention mask to 1 for all input tokens
49
  print("Thinking ...\n ")
50
  with torch.no_grad():
51
  output = model.generate(input_ids=input_ids, attention_mask=attention_mask, max_length=256, early_stopping=False, temperature=0.9, top_p=0.9,top_k=500, do_sample=True,output_scores=True, pad_token_id=tokenizer.eos_token_id, repetition_penalty=1.2,eos_token_id=tokenizer.eos_token_id)
 
38
  model_path = "RajuKandasamy/ponniyinselvan_1.4b_alpha"
39
  device = "cuda" if torch.cuda.is_available() else "cpu"
40
  model = AutoModelForCausalLM.from_pretrained(model_path, load_in_8bit=False).to(device)
 
41
  tokenizer = AutoTokenizer.from_pretrained(model_path)
42
 
43
  model.eval()
44
 
45
  prompt="""வந்தியத்தேவன்"""
46
  input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
47
+ attention_mask = torch.ones_like(input_ids).to(model.device)
48
  print("Thinking ...\n ")
49
  with torch.no_grad():
50
  output = model.generate(input_ids=input_ids, attention_mask=attention_mask, max_length=256, early_stopping=False, temperature=0.9, top_p=0.9,top_k=500, do_sample=True,output_scores=True, pad_token_id=tokenizer.eos_token_id, repetition_penalty=1.2,eos_token_id=tokenizer.eos_token_id)