File size: 10,165 Bytes
d0f5129 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
datasets:
- Ramyashree/Dataset-500-validation
metrics:
- accuracy
widget:
- text: i want to know the status of my reimbursement, how do i track it?
- text: ask an agent how to modify my profile
- text: I want to use my other online account, help me switch them
- text: I want information about your money back policy
- text: how can I switch to another account?
pipeline_tag: text-classification
inference: true
base_model: thenlper/gte-large
---
# SetFit with thenlper/gte-large
This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [Ramyashree/Dataset-500-validation](https://huggingface.co/datasets/Ramyashree/Dataset-500-validation) dataset that can be used for Text Classification. This SetFit model uses [thenlper/gte-large](https://huggingface.co/thenlper/gte-large) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [thenlper/gte-large](https://huggingface.co/thenlper/gte-large)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 10 classes
- **Training Dataset:** [Ramyashree/Dataset-500-validation](https://huggingface.co/datasets/Ramyashree/Dataset-500-validation)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:--------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| create_account | <ul><li>'can i register?'</li><li>'i have no account, what do i have to do?'</li><li>'i watn to know if i can register two profiles with the same email address'</li></ul> |
| delete_account | <ul><li>'I changed my mind, what should I do to cancel my profile?'</li><li>'i changed my mind, what do i have to do to delete my account?'</li><li>"I odn't want my user account, how do I delete it?"</li></ul> |
| edit_account | <ul><li>'I want to change my profile, how can I do it?'</li><li>'I need help making changes to my profile'</li><li>'can I make changes to my profile?'</li></ul> |
| recover_password | <ul><li>'could u ask an agent if i could retrieve my password?'</li><li>'my online account was hacked, how do I recover it?'</li><li>'my account was hacked, can u recover it?'</li></ul> |
| track_refund | <ul><li>'can yoy tell me about the status of my reimbursement?'</li><li>'tell me if my reimbursement was processed'</li><li>'I want to view the status of my refund, what can I do?'</li></ul> |
| check_refund_policy | <ul><li>'I want to check your reimbursement policy, what can I do?'</li><li>'cam u ask an agent if i can see their money back guarantee?'</li><li>'I want to check your refund policy'</li></ul> |
| switch_account | <ul><li>'I weant to use my other account, switch them'</li><li>'ask an agent if i can change to another user account'</li><li>'where to change to another profile'</li></ul> |
| payment_issue | <ul><li>'I have a problem when trying to pay for my online order, notify it'</li><li>'could you ask an agent where I can report issues making a payment, please?'</li><li>'ask an agent how i can inform of problems paying'</li></ul> |
| get_refund | <ul><li>'the concert was postponed and i want to get a reimbursement'</li><li>'the concert was postponed, help me get a reimbursement'</li><li>'how to get a reimbursement'</li></ul> |
| get_invoice | <ul><li>'I want to request some bills, can you tell me how I can do it?'</li><li>'ask an agent how I can request somebills'</li><li>'i want to see a bill'</li></ul> |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Ramyashree/gte-large-with500records-validate")
# Run inference
preds = model("how can I switch to another account?")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 3 | 10.356 | 25 |
| Label | Training Sample Count |
|:--------------------|:----------------------|
| check_refund_policy | 50 |
| create_account | 50 |
| delete_account | 50 |
| edit_account | 50 |
| get_invoice | 50 |
| get_refund | 50 |
| payment_issue | 50 |
| recover_password | 50 |
| switch_account | 50 |
| track_refund | 50 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0008 | 1 | 0.3184 | - |
| 0.04 | 50 | 0.1532 | - |
| 0.08 | 100 | 0.0078 | - |
| 0.12 | 150 | 0.0124 | - |
| 0.16 | 200 | 0.0017 | - |
| 0.2 | 250 | 0.0009 | - |
| 0.24 | 300 | 0.0008 | - |
| 0.28 | 350 | 0.0008 | - |
| 0.32 | 400 | 0.0007 | - |
| 0.36 | 450 | 0.0008 | - |
| 0.4 | 500 | 0.0004 | - |
| 0.44 | 550 | 0.0005 | - |
| 0.48 | 600 | 0.0004 | - |
| 0.52 | 650 | 0.0005 | - |
| 0.56 | 700 | 0.0003 | - |
| 0.6 | 750 | 0.0004 | - |
| 0.64 | 800 | 0.0003 | - |
| 0.68 | 850 | 0.0003 | - |
| 0.72 | 900 | 0.0003 | - |
| 0.76 | 950 | 0.0004 | - |
| 0.8 | 1000 | 0.0004 | - |
| 0.84 | 1050 | 0.0004 | - |
| 0.88 | 1100 | 0.0002 | - |
| 0.92 | 1150 | 0.0002 | - |
| 0.96 | 1200 | 0.0003 | - |
| 1.0 | 1250 | 0.0004 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.15.0
- Tokenizers: 0.15.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |