PseudoTerminal X commited on
Commit
095690a
1 Parent(s): 3b19e47

Model card auto-generated by SimpleTuner

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -106,7 +106,7 @@ widget:
106
  negative_prompt: 'blurry, cropped, ugly'
107
  output:
108
  url: ./assets/image_18_0.png
109
- - text: 'julie, in photograph style'
110
  parameters:
111
  negative_prompt: 'blurry, cropped, ugly'
112
  output:
@@ -124,7 +124,7 @@ The main validation prompt used during training was:
124
 
125
 
126
  ```
127
- julie, in photograph style
128
  ```
129
 
130
  ## Validation settings
@@ -149,7 +149,7 @@ You may reuse the base model text encoder for inference.
149
  ## Training settings
150
 
151
  - Training epochs: 1
152
- - Training steps: 31500
153
  - Learning rate: 4e-05
154
  - Effective batch size: 2
155
  - Micro-batch size: 1
@@ -223,7 +223,7 @@ adapter_id = 'ptx0/flux-dreambooth-lora-r128-dev-reddit'
223
  pipeline = DiffusionPipeline.from_pretrained(model_id)
224
  pipeline.load_lora_weights(adapter_id)
225
 
226
- prompt = "julie, in photograph style"
227
 
228
 
229
  pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
 
106
  negative_prompt: 'blurry, cropped, ugly'
107
  output:
108
  url: ./assets/image_18_0.png
109
+ - text: 'a fully-clothed photograph of an adult woman, in photograph style'
110
  parameters:
111
  negative_prompt: 'blurry, cropped, ugly'
112
  output:
 
124
 
125
 
126
  ```
127
+ a fully-clothed photograph of an adult woman, in photograph style
128
  ```
129
 
130
  ## Validation settings
 
149
  ## Training settings
150
 
151
  - Training epochs: 1
152
+ - Training steps: 32000
153
  - Learning rate: 4e-05
154
  - Effective batch size: 2
155
  - Micro-batch size: 1
 
223
  pipeline = DiffusionPipeline.from_pretrained(model_id)
224
  pipeline.load_lora_weights(adapter_id)
225
 
226
+ prompt = "a fully-clothed photograph of an adult woman, in photograph style"
227
 
228
 
229
  pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')