Upload model.py
Browse files
model.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from Huggingface trl package AutoModelForCausalLMWithValueHead class
|
2 |
+
# Enabling better customization for generalizable reward modeling
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from transformers import AutoModelForCausalLM
|
6 |
+
from trl import PreTrainedModelWrapper
|
7 |
+
|
8 |
+
|
9 |
+
class ValueHead(nn.Module):
|
10 |
+
def __init__(self, config, **kwargs):
|
11 |
+
super().__init__()
|
12 |
+
if not hasattr(config, "summary_dropout_prob"):
|
13 |
+
summary_dropout_prob = kwargs.pop("summary_dropout_prob", 0.1)
|
14 |
+
else:
|
15 |
+
summary_dropout_prob = config.summary_dropout_prob
|
16 |
+
|
17 |
+
self.dropout = nn.Dropout(summary_dropout_prob) if summary_dropout_prob else nn.Identity()
|
18 |
+
|
19 |
+
# some models such as OPT have a projection layer before the word embeddings - e.g. OPT-350m
|
20 |
+
if hasattr(config, "hidden_size"):
|
21 |
+
hidden_size = config.hidden_size
|
22 |
+
if hasattr(config, "word_embed_proj_dim"):
|
23 |
+
hidden_size = config.word_embed_proj_dim
|
24 |
+
elif hasattr(config, "is_encoder_decoder"):
|
25 |
+
if config.is_encoder_decoder and hasattr(config, "decoder"):
|
26 |
+
if hasattr(config.decoder, "hidden_size"):
|
27 |
+
hidden_size = config.decoder.hidden_size
|
28 |
+
|
29 |
+
# get vhead config
|
30 |
+
if hasattr(config, "vhead_layer_type"): # config from json first
|
31 |
+
self.layer_type = config.vhead_layer_type
|
32 |
+
else:
|
33 |
+
self.layer_type = kwargs.pop("vhead_layer_type", 'mlp')
|
34 |
+
if hasattr(config, 'vhead_num_neurons'):
|
35 |
+
num_neurons = config.vhead_num_neurons
|
36 |
+
else:
|
37 |
+
num_neurons = kwargs.pop("vhead_num_neurons", 1024)
|
38 |
+
if hasattr(config, 'vhead_num_layers'):
|
39 |
+
num_layers = config.vhead_num_layers
|
40 |
+
else:
|
41 |
+
num_layers = kwargs.pop("vhead_num_layers", 1)
|
42 |
+
|
43 |
+
if self.layer_type == 'linear':
|
44 |
+
self.summary = nn.Linear(hidden_size, 1)
|
45 |
+
else:
|
46 |
+
module_lis = []
|
47 |
+
input_neurons = hidden_size
|
48 |
+
for i in range(num_layers):
|
49 |
+
module_lis.extend([nn.Linear(input_neurons, num_neurons), nn.ReLU()])
|
50 |
+
input_neurons = num_neurons
|
51 |
+
|
52 |
+
module_lis.append(nn.Linear(num_neurons, 1))
|
53 |
+
self.summary = nn.Sequential(*module_lis)
|
54 |
+
self.flatten = nn.Flatten()
|
55 |
+
|
56 |
+
def forward(self, hidden_states):
|
57 |
+
output = self.dropout(hidden_states)
|
58 |
+
if (self.layer_type == 'linear' and output.dtype != self.summary.weight.dtype):
|
59 |
+
output = output.to(self.summary.weight.dtype)
|
60 |
+
elif (self.layer_type != 'linear' and output.dtype != self.summary[0].weight.dtype):
|
61 |
+
output = output.to(self.summary[0].weight.dtype)
|
62 |
+
|
63 |
+
output = self.summary(output)
|
64 |
+
return output
|
65 |
+
|
66 |
+
|
67 |
+
class AutoModelForCausalLMWithValueHead(PreTrainedModelWrapper):
|
68 |
+
transformers_parent_class = AutoModelForCausalLM
|
69 |
+
lm_head_namings = ["lm_head", "embed_out"]
|
70 |
+
supported_args = (
|
71 |
+
"summary_dropout_prob",
|
72 |
+
"v_head_initializer_range",
|
73 |
+
"v_head_init_strategy",
|
74 |
+
"layer_type",
|
75 |
+
'num_neurons',
|
76 |
+
'num_layers',
|
77 |
+
)
|
78 |
+
|
79 |
+
def __init__(self, pretrained_model, **kwargs):
|
80 |
+
r"""
|
81 |
+
Initializes the model.
|
82 |
+
"""
|
83 |
+
super().__init__(pretrained_model, **kwargs)
|
84 |
+
v_head_kwargs, _, _ = self._split_kwargs(kwargs)
|
85 |
+
|
86 |
+
if not any(hasattr(self.pretrained_model, attribute) for attribute in self.lm_head_namings):
|
87 |
+
raise ValueError("The model does not have a language model head, please use a model that has one.")
|
88 |
+
|
89 |
+
self.v_head = ValueHead(self.pretrained_model.config, **v_head_kwargs)
|
90 |
+
self._init_weights(**v_head_kwargs)
|
91 |
+
|
92 |
+
def _init_weights(self, **kwargs):
|
93 |
+
r"""
|
94 |
+
Initializes the weights of the value head.
|
95 |
+
"""
|
96 |
+
initializer_range = kwargs.pop("v_head_initializer_range", 0.2)
|
97 |
+
# random init by default
|
98 |
+
init_strategy = kwargs.pop("v_head_init_strategy", None)
|
99 |
+
if init_strategy is None:
|
100 |
+
# do nothing
|
101 |
+
pass
|
102 |
+
elif init_strategy == "normal":
|
103 |
+
self.v_head.summary.weight.data.normal_(mean=0.0, std=initializer_range)
|
104 |
+
self.v_head.summary.bias.data.zero_()
|
105 |
+
|
106 |
+
def forward(
|
107 |
+
self,
|
108 |
+
input_ids=None,
|
109 |
+
past_key_values=None,
|
110 |
+
attention_mask=None,
|
111 |
+
**kwargs,
|
112 |
+
):
|
113 |
+
kwargs["output_hidden_states"] = True # this had already been set in the LORA / PEFT examples
|
114 |
+
kwargs["past_key_values"] = past_key_values
|
115 |
+
|
116 |
+
if self.is_peft_model and self.pretrained_model.active_peft_config.peft_type == "PREFIX_TUNING":
|
117 |
+
kwargs.pop("past_key_values")
|
118 |
+
|
119 |
+
base_model_output = self.pretrained_model(
|
120 |
+
input_ids=input_ids,
|
121 |
+
attention_mask=attention_mask,
|
122 |
+
**kwargs,
|
123 |
+
)
|
124 |
+
|
125 |
+
last_hidden_state = base_model_output.hidden_states[-1]
|
126 |
+
lm_logits = base_model_output.logits
|
127 |
+
loss = base_model_output.loss
|
128 |
+
|
129 |
+
if (hasattr(self.v_head.summary, 'weight') and last_hidden_state.device != self.v_head.summary.weight.device):
|
130 |
+
last_hidden_state = last_hidden_state.to(self.v_head.summary.weight.device)
|
131 |
+
elif not hasattr(self.v_head.summary, 'weight') and (last_hidden_state.device != self.v_head.summary[0].weight.device):
|
132 |
+
last_hidden_state = last_hidden_state.to(self.v_head.summary[0].weight.device)
|
133 |
+
|
134 |
+
# use the last token value as reward
|
135 |
+
if torch.any(attention_mask[:, 0] == 0):
|
136 |
+
# left padding
|
137 |
+
last_index = attention_mask.shape[-1] - 1
|
138 |
+
else:
|
139 |
+
# right padding
|
140 |
+
last_index = attention_mask.sum(dim=-1) - 1
|
141 |
+
value = self.v_head(last_hidden_state).squeeze(-1)[torch.arange(len(last_hidden_state)), last_index]
|
142 |
+
|
143 |
+
# force upcast in fp32 if logits are in half-precision
|
144 |
+
if lm_logits.dtype != torch.float32:
|
145 |
+
lm_logits = lm_logits.float()
|
146 |
+
|
147 |
+
return (lm_logits, loss, value)
|
148 |
+
|
149 |
+
def generate(self, *args, **kwargs):
|
150 |
+
return self.pretrained_model.generate(*args, **kwargs)
|
151 |
+
|
152 |
+
def state_dict(self, *args, **kwargs):
|
153 |
+
pretrained_model_state_dict = self.pretrained_model.state_dict(*args, **kwargs)
|
154 |
+
|
155 |
+
v_head_state_dict = self.v_head.state_dict(*args, **kwargs)
|
156 |
+
for k, v in v_head_state_dict.items():
|
157 |
+
pretrained_model_state_dict[f"v_head.{k}"] = v
|
158 |
+
return pretrained_model_state_dict
|
159 |
+
|
160 |
+
def push_to_hub(self, *args, **kwargs):
|
161 |
+
setattr(self.pretrained_model, "v_head", self.v_head)
|
162 |
+
return self.pretrained_model.push_to_hub(*args, **kwargs)
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
def post_init(self, state_dict):
|
167 |
+
for k in list(state_dict.keys()):
|
168 |
+
if "v_head." in k:
|
169 |
+
state_dict[k.replace("v_head.", "")] = state_dict.pop(k)
|
170 |
+
self.v_head.load_state_dict(state_dict, strict=False)
|
171 |
+
del state_dict
|
172 |
+
|
173 |
+
if hasattr(self.pretrained_model, "hf_device_map"):
|
174 |
+
if (
|
175 |
+
"cpu" in self.pretrained_model.hf_device_map.values()
|
176 |
+
or "disk" in self.pretrained_model.hf_device_map.values()
|
177 |
+
):
|
178 |
+
raise ValueError(
|
179 |
+
"The model is offloaded on CPU or disk - CPU & disk offloading is not supported for ValueHead models."
|
180 |
+
)
|
181 |
+
|
182 |
+
first_device = list(set(self.pretrained_model.hf_device_map.values()))[0]
|
183 |
+
|
184 |
+
self.v_head = self.v_head.to(first_device)
|
185 |
+
|
186 |
+
def set_device_hook(module, input, outputs):
|
187 |
+
new_output = ()
|
188 |
+
for output in outputs:
|
189 |
+
if isinstance(output, torch.Tensor):
|
190 |
+
new_output += (output.to(first_device),)
|
191 |
+
else:
|
192 |
+
new_output += (output,)
|
193 |
+
return new_output
|
194 |
+
|
195 |
+
self.register_forward_hook(set_device_hook)
|
196 |
+
|
197 |
+
self.is_sequential_parallel = True
|
198 |
+
|
199 |
+
@classmethod
|
200 |
+
def register_for_auto_class(cls, auto_class="AutoModel"):
|
201 |
+
if not isinstance(auto_class, str):
|
202 |
+
auto_class = auto_class.__name__
|
203 |
+
|
204 |
+
import transformers.models.auto as auto_module
|
205 |
+
|
206 |
+
if not hasattr(auto_module, auto_class):
|
207 |
+
raise ValueError(f"{auto_class} is not a valid auto class.")
|
208 |
+
|
209 |
+
cls._auto_class = auto_class
|
210 |
+
|