--- license: mit base_model: SCUT-DLVCLab/lilt-roberta-en-base tags: - generated_from_trainer model-index: - name: lilt-en-funsd results: [] --- # lilt-en-funsd This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9402 - Answer: {'precision': 0.4992163009404389, 'recall': 0.7796817625458996, 'f1': 0.608695652173913, 'number': 817} - Header: {'precision': 0.03125, 'recall': 0.008403361344537815, 'f1': 0.013245033112582781, 'number': 119} - Question: {'precision': 0.625, 'recall': 0.7753017641597029, 'f1': 0.692084542063821, 'number': 1077} - Overall Precision: 0.5571 - Overall Recall: 0.7317 - Overall F1: 0.6326 - Overall Accuracy: 0.6359 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 25 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0