Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) NeuralSynthesis-7B-v0.2 - bnb 4bits - Model creator: https://huggingface.co/Kukedlc/ - Original model: https://huggingface.co/Kukedlc/NeuralSynthesis-7B-v0.2/ Original model description: --- tags: - merge - mergekit - lazymergekit license: apache-2.0 --- # NeuralSynthesis-7B-v0.2 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/ID4yrGgmKZzqctPPkT4Dp.png) NeuralSynthesis-7B-v0.2 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): ## 🧩 Configuration ```yaml models: - model: Kukedlc/Fasciculus-Arcuatus-7B-slerp - model: Gille/StrangeMerges_30-7B-slerp - model: automerger/OgnoExperiment27-7B - model: Kukedlc/Jupiter-k-7B-slerp - model: Kukedlc/Neural-4-QA-7b - model: Kukedlc/NeuralSynthesis-7B-v0.1 merge_method: model_stock base_model: Kukedlc/NeuralSynthesis-7B-v0.1 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/NeuralSynthesis-7B-v0.2" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```