RichardErkhov commited on
Commit
4c62863
·
verified ·
1 Parent(s): c85d754

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +275 -0
README.md ADDED
@@ -0,0 +1,275 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ bubo-bubo-13b - GGUF
11
+ - Model creator: https://huggingface.co/ibivibiv/
12
+ - Original model: https://huggingface.co/ibivibiv/bubo-bubo-13b/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [bubo-bubo-13b.Q2_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q2_K.gguf) | Q2_K | 4.52GB |
18
+ | [bubo-bubo-13b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.IQ3_XS.gguf) | IQ3_XS | 4.99GB |
19
+ | [bubo-bubo-13b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.IQ3_S.gguf) | IQ3_S | 5.27GB |
20
+ | [bubo-bubo-13b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q3_K_S.gguf) | Q3_K_S | 5.27GB |
21
+ | [bubo-bubo-13b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.IQ3_M.gguf) | IQ3_M | 5.57GB |
22
+ | [bubo-bubo-13b.Q3_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q3_K.gguf) | Q3_K | 5.9GB |
23
+ | [bubo-bubo-13b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q3_K_M.gguf) | Q3_K_M | 5.9GB |
24
+ | [bubo-bubo-13b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q3_K_L.gguf) | Q3_K_L | 6.45GB |
25
+ | [bubo-bubo-13b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.IQ4_XS.gguf) | IQ4_XS | 6.54GB |
26
+ | [bubo-bubo-13b.Q4_0.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q4_0.gguf) | Q4_0 | 6.86GB |
27
+ | [bubo-bubo-13b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.IQ4_NL.gguf) | IQ4_NL | 6.9GB |
28
+ | [bubo-bubo-13b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q4_K_S.gguf) | Q4_K_S | 6.91GB |
29
+ | [bubo-bubo-13b.Q4_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q4_K.gguf) | Q4_K | 7.33GB |
30
+ | [bubo-bubo-13b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q4_K_M.gguf) | Q4_K_M | 7.33GB |
31
+ | [bubo-bubo-13b.Q4_1.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q4_1.gguf) | Q4_1 | 7.61GB |
32
+ | [bubo-bubo-13b.Q5_0.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q5_0.gguf) | Q5_0 | 8.36GB |
33
+ | [bubo-bubo-13b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q5_K_S.gguf) | Q5_K_S | 8.36GB |
34
+ | [bubo-bubo-13b.Q5_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q5_K.gguf) | Q5_K | 8.6GB |
35
+ | [bubo-bubo-13b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q5_K_M.gguf) | Q5_K_M | 8.6GB |
36
+ | [bubo-bubo-13b.Q5_1.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q5_1.gguf) | Q5_1 | 9.1GB |
37
+ | [bubo-bubo-13b.Q6_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q6_K.gguf) | Q6_K | 9.95GB |
38
+ | [bubo-bubo-13b.Q8_0.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q8_0.gguf) | Q8_0 | 12.88GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ license: llama2
46
+ language:
47
+ - en
48
+ tags:
49
+ - summary
50
+
51
+ ---
52
+ # Bubo Bubo 13B
53
+
54
+ ![img](./bubo-bubo.png)
55
+
56
+ # Prompting
57
+
58
+ ## Prompt Template for alpaca style
59
+
60
+ ```
61
+ ### Instruction:
62
+
63
+ <prompt> (without the <>)
64
+
65
+ ### Response:
66
+ ```
67
+
68
+ ## Sample Code
69
+
70
+ ```python
71
+ import torch
72
+ from transformers import AutoModelForCausalLM, AutoTokenizer
73
+
74
+ torch.set_default_device("cuda")
75
+
76
+ model = AutoModelForCausalLM.from_pretrained("ibivibiv/bubo-bubo-13b", torch_dtype="auto", device_config='auto')
77
+ tokenizer = AutoTokenizer.from_pretrained("ibivibiv/bubo-bubo-13b")
78
+
79
+ inputs = tokenizer("### Instruction: Summarize this email chain : <email chain stuff here>.\n### Response:\n", return_tensors="pt", return_attention_mask=False)
80
+
81
+ outputs = model.generate(**inputs, max_length=200)
82
+ text = tokenizer.batch_decode(outputs)[0]
83
+ print(text)
84
+ ```
85
+
86
+ # Model Details
87
+ * **Trained by**: [ibivibiv](https://huggingface.co/ibivibiv)
88
+ * **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers)
89
+ * **Model type:** **bubo-bubo-13b** is an auto-regressive language model fine tuned on the Llama 2 transformer architecture.
90
+ * **Language(s)**: English
91
+ * **Purpose**: Has specific training for summary tasks. This model is targeted towards summarizing communication chains specifically.
92
+
93
+ # Benchmark Scores
94
+
95
+ I ran the benchmark harness, for curiousity, but this model is completely geared towards summarizing.
96
+
97
+ | Test Name | Accuracy |
98
+ |------------------------------------------------------|----------------------|
99
+ | all | 0.579149139810157 |
100
+ | arc:challenge | 0.5631399317406144 |
101
+ | hellaswag | 0.6317466640111532 |
102
+ | hendrycksTest-abstract_algebra | 0.32 |
103
+ | hendrycksTest-anatomy | 0.5481481481481482 |
104
+ | hendrycksTest-astronomy | 0.5657894736842105 |
105
+ | hendrycksTest-business_ethics | 0.55 |
106
+ | hendrycksTest-clinical_knowledge | 0.6 |
107
+ | hendrycksTest-college_biology | 0.6388888888888888 |
108
+ | hendrycksTest-college_chemistry | 0.38 |
109
+ | hendrycksTest-college_computer_science | 0.43 |
110
+ | hendrycksTest-college_mathematics | 0.34 |
111
+ | hendrycksTest-college_medicine | 0.5260115606936416 |
112
+ | hendrycksTest-college_physics | 0.3431372549019608 |
113
+ | hendrycksTest-computer_security | 0.71 |
114
+ | hendrycksTest-conceptual_physics | 0.49361702127659574 |
115
+ | hendrycksTest-econometrics | 0.35964912280701755 |
116
+ | hendrycksTest-electrical_engineering | 0.5586206896551724 |
117
+ | hendrycksTest-elementary_mathematics | 0.3439153439153439 |
118
+ | hendrycksTest-formal_logic | 0.3333333333333333 |
119
+ | hendrycksTest-global_facts | 0.42 |
120
+ | hendrycksTest-high_school_biology | 0.6903225806451613 |
121
+ | hendrycksTest-high_school_chemistry | 0.45320197044334976 |
122
+ | hendrycksTest-high_school_computer_science | 0.58 |
123
+ | hendrycksTest-high_school_european_history | 0.6787878787878788 |
124
+ | hendrycksTest-high_school_geography | 0.7424242424242424 |
125
+ | hendrycksTest-high_school_government_and_politics | 0.8341968911917098 |
126
+ | hendrycksTest-high_school_macroeconomics | 0.558974358974359 |
127
+ | hendrycksTest-high_school_mathematics | 0.3 |
128
+ | hendrycksTest-high_school_microeconomics | 0.5672268907563025 |
129
+ | hendrycksTest-high_school_physics | 0.33112582781456956 |
130
+ | hendrycksTest-high_school_psychology | 0.7577981651376147 |
131
+ | hendrycksTest-high_school_statistics | 0.4212962962962963 |
132
+ | hendrycksTest-high_school_us_history | 0.8186274509803921 |
133
+ | hendrycksTest-high_school_world_history | 0.759493670886076 |
134
+ | hendrycksTest-human_aging | 0.6547085201793722 |
135
+ | hendrycksTest-human_sexuality | 0.6412213740458015 |
136
+ | hendrycksTest-international_law | 0.6776859504132231 |
137
+ | hendrycksTest-jurisprudence | 0.75 |
138
+ | hendrycksTest-logical_fallacies | 0.6993865030674846 |
139
+ | hendrycksTest-machine_learning | 0.41964285714285715 |
140
+ | hendrycksTest-management | 0.7281553398058253 |
141
+ | hendrycksTest-marketing | 0.8504273504273504 |
142
+ | hendrycksTest-medical_genetics | 0.6 |
143
+ | hendrycksTest-miscellaneous | 0.7624521072796935 |
144
+ | hendrycksTest-moral_disputes | 0.6560693641618497 |
145
+ | hendrycksTest-moral_scenarios | 0.4346368715083799 |
146
+ | hendrycksTest-nutrition | 0.673202614379085 |
147
+ | hendrycksTest-philosophy | 0.7009646302250804 |
148
+ | hendrycksTest-prehistory | 0.7067901234567902 |
149
+ | hendrycksTest-professional_accounting | 0.4645390070921986 |
150
+ | hendrycksTest-professional_law | 0.45697522816166886 |
151
+ | hendrycksTest-professional_medicine | 0.5514705882352942 |
152
+ | hendrycksTest-professional_psychology | 0.6013071895424836 |
153
+ | hendrycksTest-public_relations | 0.6636363636363637 |
154
+ | hendrycksTest-security_studies | 0.6448979591836734 |
155
+ | hendrycksTest-sociology | 0.7611940298507462 |
156
+ | hendrycksTest-us_foreign_policy | 0.84 |
157
+ | hendrycksTest-virology | 0.4819277108433735 |
158
+ | hendrycksTest-world_religions | 0.7894736842105263 |
159
+ | truthfulqa:mc | 0.4762440289139372 |
160
+ | winogrande | 0.7616416732438832 |
161
+ | gsm8k | 0.20621683093252463 |
162
+
163
+
164
+ ## Citations
165
+
166
+ ```
167
+ @misc{open-llm-leaderboard,
168
+ author = {Edward Beeching and Clémentine Fourrier and Nathan Habib and Sheon Han and Nathan Lambert and Nazneen Rajani and Omar Sanseviero and Lewis Tunstall and Thomas Wolf},
169
+ title = {Open LLM Leaderboard},
170
+ year = {2023},
171
+ publisher = {Hugging Face},
172
+ howpublished = "\url{https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard}"
173
+ }
174
+ ```
175
+ ```
176
+ @software{eval-harness,
177
+ author = {Gao, Leo and
178
+ Tow, Jonathan and
179
+ Biderman, Stella and
180
+ Black, Sid and
181
+ DiPofi, Anthony and
182
+ Foster, Charles and
183
+ Golding, Laurence and
184
+ Hsu, Jeffrey and
185
+ McDonell, Kyle and
186
+ Muennighoff, Niklas and
187
+ Phang, Jason and
188
+ Reynolds, Laria and
189
+ Tang, Eric and
190
+ Thite, Anish and
191
+ Wang, Ben and
192
+ Wang, Kevin and
193
+ Zou, Andy},
194
+ title = {A framework for few-shot language model evaluation},
195
+ month = sep,
196
+ year = 2021,
197
+ publisher = {Zenodo},
198
+ version = {v0.0.1},
199
+ doi = {10.5281/zenodo.5371628},
200
+ url = {https://doi.org/10.5281/zenodo.5371628}
201
+ }
202
+ ```
203
+ ```
204
+ @misc{clark2018think,
205
+ title={Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge},
206
+ author={Peter Clark and Isaac Cowhey and Oren Etzioni and Tushar Khot and Ashish Sabharwal and Carissa Schoenick and Oyvind Tafjord},
207
+ year={2018},
208
+ eprint={1803.05457},
209
+ archivePrefix={arXiv},
210
+ primaryClass={cs.AI}
211
+ }
212
+ ```
213
+ ```
214
+ @misc{zellers2019hellaswag,
215
+ title={HellaSwag: Can a Machine Really Finish Your Sentence?},
216
+ author={Rowan Zellers and Ari Holtzman and Yonatan Bisk and Ali Farhadi and Yejin Choi},
217
+ year={2019},
218
+ eprint={1905.07830},
219
+ archivePrefix={arXiv},
220
+ primaryClass={cs.CL}
221
+ }
222
+ ```
223
+ ```
224
+ @misc{hendrycks2021measuring,
225
+ title={Measuring Massive Multitask Language Understanding},
226
+ author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt},
227
+ year={2021},
228
+ eprint={2009.03300},
229
+ archivePrefix={arXiv},
230
+ primaryClass={cs.CY}
231
+ }
232
+ ```
233
+ ```
234
+ @misc{lin2022truthfulqa,
235
+ title={TruthfulQA: Measuring How Models Mimic Human Falsehoods},
236
+ author={Stephanie Lin and Jacob Hilton and Owain Evans},
237
+ year={2022},
238
+ eprint={2109.07958},
239
+ archivePrefix={arXiv},
240
+ primaryClass={cs.CL}
241
+ }
242
+ ```
243
+ ```
244
+ @misc{DBLP:journals/corr/abs-1907-10641,
245
+ title={{WINOGRANDE:} An Adversarial Winograd Schema Challenge at Scale},
246
+ author={Keisuke Sakaguchi and Ronan Le Bras and Chandra Bhagavatula and Yejin Choi},
247
+ year={2019},
248
+ eprint={1907.10641},
249
+ archivePrefix={arXiv},
250
+ primaryClass={cs.CL}
251
+ }
252
+ ```
253
+ ```
254
+ @misc{DBLP:journals/corr/abs-2110-14168,
255
+ title={Training Verifiers to Solve Math Word Problems},
256
+ author={Karl Cobbe and
257
+ Vineet Kosaraju and
258
+ Mohammad Bavarian and
259
+ Mark Chen and
260
+ Heewoo Jun and
261
+ Lukasz Kaiser and
262
+ Matthias Plappert and
263
+ Jerry Tworek and
264
+ Jacob Hilton and
265
+ Reiichiro Nakano and
266
+ Christopher Hesse and
267
+ John Schulman},
268
+ year={2021},
269
+ eprint={2110.14168},
270
+ archivePrefix={arXiv},
271
+ primaryClass={cs.CL}
272
+ }
273
+ ```
274
+
275
+