Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) bubo-bubo-13b - GGUF - Model creator: https://huggingface.co/ibivibiv/ - Original model: https://huggingface.co/ibivibiv/bubo-bubo-13b/ | Name | Quant method | Size | | ---- | ---- | ---- | | [bubo-bubo-13b.Q2_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q2_K.gguf) | Q2_K | 4.52GB | | [bubo-bubo-13b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.IQ3_XS.gguf) | IQ3_XS | 4.99GB | | [bubo-bubo-13b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.IQ3_S.gguf) | IQ3_S | 5.27GB | | [bubo-bubo-13b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q3_K_S.gguf) | Q3_K_S | 5.27GB | | [bubo-bubo-13b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.IQ3_M.gguf) | IQ3_M | 5.57GB | | [bubo-bubo-13b.Q3_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q3_K.gguf) | Q3_K | 5.9GB | | [bubo-bubo-13b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q3_K_M.gguf) | Q3_K_M | 5.9GB | | [bubo-bubo-13b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q3_K_L.gguf) | Q3_K_L | 6.45GB | | [bubo-bubo-13b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.IQ4_XS.gguf) | IQ4_XS | 6.54GB | | [bubo-bubo-13b.Q4_0.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q4_0.gguf) | Q4_0 | 6.86GB | | [bubo-bubo-13b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.IQ4_NL.gguf) | IQ4_NL | 6.9GB | | [bubo-bubo-13b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q4_K_S.gguf) | Q4_K_S | 6.91GB | | [bubo-bubo-13b.Q4_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q4_K.gguf) | Q4_K | 7.33GB | | [bubo-bubo-13b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q4_K_M.gguf) | Q4_K_M | 7.33GB | | [bubo-bubo-13b.Q4_1.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q4_1.gguf) | Q4_1 | 7.61GB | | [bubo-bubo-13b.Q5_0.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q5_0.gguf) | Q5_0 | 8.36GB | | [bubo-bubo-13b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q5_K_S.gguf) | Q5_K_S | 8.36GB | | [bubo-bubo-13b.Q5_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q5_K.gguf) | Q5_K | 8.6GB | | [bubo-bubo-13b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q5_K_M.gguf) | Q5_K_M | 8.6GB | | [bubo-bubo-13b.Q5_1.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q5_1.gguf) | Q5_1 | 9.1GB | | [bubo-bubo-13b.Q6_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q6_K.gguf) | Q6_K | 9.95GB | | [bubo-bubo-13b.Q8_0.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_bubo-bubo-13b-gguf/blob/main/bubo-bubo-13b.Q8_0.gguf) | Q8_0 | 12.88GB | Original model description: --- license: llama2 language: - en tags: - summary --- # Bubo Bubo 13B ![img](./bubo-bubo.png) # Prompting ## Prompt Template for alpaca style ``` ### Instruction: (without the <>) ### Response: ``` ## Sample Code ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer torch.set_default_device("cuda") model = AutoModelForCausalLM.from_pretrained("ibivibiv/bubo-bubo-13b", torch_dtype="auto", device_config='auto') tokenizer = AutoTokenizer.from_pretrained("ibivibiv/bubo-bubo-13b") inputs = tokenizer("### Instruction: Summarize this email chain : .\n### Response:\n", return_tensors="pt", return_attention_mask=False) outputs = model.generate(**inputs, max_length=200) text = tokenizer.batch_decode(outputs)[0] print(text) ``` # Model Details * **Trained by**: [ibivibiv](https://huggingface.co/ibivibiv) * **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers) * **Model type:** **bubo-bubo-13b** is an auto-regressive language model fine tuned on the Llama 2 transformer architecture. * **Language(s)**: English * **Purpose**: Has specific training for summary tasks. This model is targeted towards summarizing communication chains specifically. # Benchmark Scores I ran the benchmark harness, for curiousity, but this model is completely geared towards summarizing. | Test Name | Accuracy | |------------------------------------------------------|----------------------| | all | 0.579149139810157 | | arc:challenge | 0.5631399317406144 | | hellaswag | 0.6317466640111532 | | hendrycksTest-abstract_algebra | 0.32 | | hendrycksTest-anatomy | 0.5481481481481482 | | hendrycksTest-astronomy | 0.5657894736842105 | | hendrycksTest-business_ethics | 0.55 | | hendrycksTest-clinical_knowledge | 0.6 | | hendrycksTest-college_biology | 0.6388888888888888 | | hendrycksTest-college_chemistry | 0.38 | | hendrycksTest-college_computer_science | 0.43 | | hendrycksTest-college_mathematics | 0.34 | | hendrycksTest-college_medicine | 0.5260115606936416 | | hendrycksTest-college_physics | 0.3431372549019608 | | hendrycksTest-computer_security | 0.71 | | hendrycksTest-conceptual_physics | 0.49361702127659574 | | hendrycksTest-econometrics | 0.35964912280701755 | | hendrycksTest-electrical_engineering | 0.5586206896551724 | | hendrycksTest-elementary_mathematics | 0.3439153439153439 | | hendrycksTest-formal_logic | 0.3333333333333333 | | hendrycksTest-global_facts | 0.42 | | hendrycksTest-high_school_biology | 0.6903225806451613 | | hendrycksTest-high_school_chemistry | 0.45320197044334976 | | hendrycksTest-high_school_computer_science | 0.58 | | hendrycksTest-high_school_european_history | 0.6787878787878788 | | hendrycksTest-high_school_geography | 0.7424242424242424 | | hendrycksTest-high_school_government_and_politics | 0.8341968911917098 | | hendrycksTest-high_school_macroeconomics | 0.558974358974359 | | hendrycksTest-high_school_mathematics | 0.3 | | hendrycksTest-high_school_microeconomics | 0.5672268907563025 | | hendrycksTest-high_school_physics | 0.33112582781456956 | | hendrycksTest-high_school_psychology | 0.7577981651376147 | | hendrycksTest-high_school_statistics | 0.4212962962962963 | | hendrycksTest-high_school_us_history | 0.8186274509803921 | | hendrycksTest-high_school_world_history | 0.759493670886076 | | hendrycksTest-human_aging | 0.6547085201793722 | | hendrycksTest-human_sexuality | 0.6412213740458015 | | hendrycksTest-international_law | 0.6776859504132231 | | hendrycksTest-jurisprudence | 0.75 | | hendrycksTest-logical_fallacies | 0.6993865030674846 | | hendrycksTest-machine_learning | 0.41964285714285715 | | hendrycksTest-management | 0.7281553398058253 | | hendrycksTest-marketing | 0.8504273504273504 | | hendrycksTest-medical_genetics | 0.6 | | hendrycksTest-miscellaneous | 0.7624521072796935 | | hendrycksTest-moral_disputes | 0.6560693641618497 | | hendrycksTest-moral_scenarios | 0.4346368715083799 | | hendrycksTest-nutrition | 0.673202614379085 | | hendrycksTest-philosophy | 0.7009646302250804 | | hendrycksTest-prehistory | 0.7067901234567902 | | hendrycksTest-professional_accounting | 0.4645390070921986 | | hendrycksTest-professional_law | 0.45697522816166886 | | hendrycksTest-professional_medicine | 0.5514705882352942 | | hendrycksTest-professional_psychology | 0.6013071895424836 | | hendrycksTest-public_relations | 0.6636363636363637 | | hendrycksTest-security_studies | 0.6448979591836734 | | hendrycksTest-sociology | 0.7611940298507462 | | hendrycksTest-us_foreign_policy | 0.84 | | hendrycksTest-virology | 0.4819277108433735 | | hendrycksTest-world_religions | 0.7894736842105263 | | truthfulqa:mc | 0.4762440289139372 | | winogrande | 0.7616416732438832 | | gsm8k | 0.20621683093252463 | ## Citations ``` @misc{open-llm-leaderboard, author = {Edward Beeching and Clémentine Fourrier and Nathan Habib and Sheon Han and Nathan Lambert and Nazneen Rajani and Omar Sanseviero and Lewis Tunstall and Thomas Wolf}, title = {Open LLM Leaderboard}, year = {2023}, publisher = {Hugging Face}, howpublished = "\url{https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard}" } ``` ``` @software{eval-harness, author = {Gao, Leo and Tow, Jonathan and Biderman, Stella and Black, Sid and DiPofi, Anthony and Foster, Charles and Golding, Laurence and Hsu, Jeffrey and McDonell, Kyle and Muennighoff, Niklas and Phang, Jason and Reynolds, Laria and Tang, Eric and Thite, Anish and Wang, Ben and Wang, Kevin and Zou, Andy}, title = {A framework for few-shot language model evaluation}, month = sep, year = 2021, publisher = {Zenodo}, version = {v0.0.1}, doi = {10.5281/zenodo.5371628}, url = {https://doi.org/10.5281/zenodo.5371628} } ``` ``` @misc{clark2018think, title={Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge}, author={Peter Clark and Isaac Cowhey and Oren Etzioni and Tushar Khot and Ashish Sabharwal and Carissa Schoenick and Oyvind Tafjord}, year={2018}, eprint={1803.05457}, archivePrefix={arXiv}, primaryClass={cs.AI} } ``` ``` @misc{zellers2019hellaswag, title={HellaSwag: Can a Machine Really Finish Your Sentence?}, author={Rowan Zellers and Ari Holtzman and Yonatan Bisk and Ali Farhadi and Yejin Choi}, year={2019}, eprint={1905.07830}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ``` @misc{hendrycks2021measuring, title={Measuring Massive Multitask Language Understanding}, author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt}, year={2021}, eprint={2009.03300}, archivePrefix={arXiv}, primaryClass={cs.CY} } ``` ``` @misc{lin2022truthfulqa, title={TruthfulQA: Measuring How Models Mimic Human Falsehoods}, author={Stephanie Lin and Jacob Hilton and Owain Evans}, year={2022}, eprint={2109.07958}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ``` @misc{DBLP:journals/corr/abs-1907-10641, title={{WINOGRANDE:} An Adversarial Winograd Schema Challenge at Scale}, author={Keisuke Sakaguchi and Ronan Le Bras and Chandra Bhagavatula and Yejin Choi}, year={2019}, eprint={1907.10641}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ``` @misc{DBLP:journals/corr/abs-2110-14168, title={Training Verifiers to Solve Math Word Problems}, author={Karl Cobbe and Vineet Kosaraju and Mohammad Bavarian and Mark Chen and Heewoo Jun and Lukasz Kaiser and Matthias Plappert and Jerry Tworek and Jacob Hilton and Reiichiro Nakano and Christopher Hesse and John Schulman}, year={2021}, eprint={2110.14168}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```